ANNUAL GROUNDWATER MONITORING REPORT

OPEN BURNING GROUND (HAZARDOUS WASTE MANAGEMENT UNIT 13) CALENDAR YEAR 2009

RADFORD ARMY AMMUNITION PLANT RADFORD, VIRGINIA

Submitted to:

Virginia Department of Environmental Quality 629 East Main Street Richmond, Virginia 23219 (800) 592-5482

Prepared for:

Alliant Techsystems Inc.
Radford Army Ammunition Plant
Route 114
Radford, Virginia 24141-0100

FEBRUARY 2010

DAA PROJECT No. B03204-07

DRAPER ADEN ASSOCIATES PREPARED THIS DOCUMENT (WHICH MAY INCLUDE DRAWINGS, SPECIFICATIONS, REPORTS, STUDIES AND ATTACHMENTS) IN ACCORDANCE WITH THE AGREEMENT BETWEEN DRAPER ADEN ASSOCIATES AND ALLIANT TECHSYSTEMS INC.

THE STANDARD OF CARE FOR ALL PROFESSIONAL ENGINEERING, ENVIRONMENTAL AND SURVEYING AND RELATED SERVICES PERFORMED OR FURNISHED BY DRAPER ADEN ASSOCIATES UNDER THIS AGREEMENT ARE THE CARE AND SKILL ORDINARILY USED BY MEMBERS OF THESE PROFESSIONS PRACTICING UNDER SIMILAR CIRCUMSTANCES AT THE SAME TIME AND IN THE SAME LOCALITY. DRAPER ADEN ASSOCIATES MAKES NO WARRANTIES, EXPRESS OR IMPLIED, UNDER THIS AGREEMENT IN CONNECTION WITH DRAPER ADEN ASSOCIATES SERVICES.

CONCLUSIONS PRESENTED ARE BASED UPON A REVIEW OF AVAILABLE INFORMATION, THE RESULTS OF OUR FIELD STUDIES, AND/OR PROFESSIONAL JUDGMENT. TO THE BEST OF OUR KNOWLEDGE, INFORMATION PROVIDED BY OTHERS IS TRUE AND ACCURATE, UNLESS OTHERWISE NOTED.

DRAPER ADEN ASSOCIATES' LIABILITY, HEREUNDER, SHALL BE LIMITED TO AMOUNTS DUE DRAPER ADEN ASSOCIATES FOR SERVICES ACTUALLY RENDERED, OR REIMBURSABLE EXPENSES ACTUALLY INCURRED.

ANY REUSE OR MODIFICATION OF ANY OF THE AFOREMENTIONED DOCUMENTS (WHETHER HARD COPIES OR ELECTRONIC TRANSMITTALS) PREPARED BY DRAPER ADEN ASSOCIATES WITHOUT WRITTEN VERIFICATION OR ADAPTATION BY DRAPER ADEN ASSOCIATES WILL BE AT THE SOLE RISK OF THE INDIVIDUAL OR ENTITY UTILIZING SAID DOCUMENTS AND SUCH USE IS WITHOUT THE AUTHORIZATION OF DRAPER ADEN ASSOCIATES. DRAPER ADEN ASSOCIATES SHALL HAVE NO LEGAL LIABILITY RESULTING FROM ANY AND ALL CLAIMS, DAMAGES, LOSSES, AND EXPENSES, INCLUDING ATTORNEY'S FEES ARISING OUT OF THE UNAUTHORIZED REUSE OR MODIFICATION OF THESE DOCUMENTS. CLIENT SHALL INDEMNIFY DRAPER ADEN ASSOCIATES FROM ANY CLAIMS ARISING OUT OF UNAUTHORIZED USE OR MODIFICATION OF THE DOCUMENTS WHETHER HARD COPY OR ELECTRONIC.

CONCLUSIONS PRESENTED BY DRAPER ADEN ASSOCIATES DO NOT REFLECT VARIATIONS IN SUBSURFACE GROUNDWATER QUALITY THAT MIGHT EXIST BETWEEN OR BEYOND SAMPLING POINTS OR BETWEEN SPECIFIC SAMPLE COLLECTIONS EVENTS. DRAPER ADEN ASSOCIATES SHALL INCUR NO LIABILITY RESULTING FROM INFORMATION SUPPLIED BY OTHERS.

TABLE OF CONTENTS

1.0	INTR	ODUCTION	1
2.0	ANNU	JAL GROUNDWATER MONITORING REPORT	2
2.1	WA	STE MANAGEMENT UNIT INFORMATION	2
2.2	Gro	OUNDWATER MONITORING PLAN	2
2.3	Gro	DUNDWATER MOVEMENT	2
2.4	200	9 GROUNDWATER MONITORING ACTIVITIES	3
2.5		DUNDWATER ANALYTICAL DATA EVALUATION	
		econd Quarter 2009	
2.5	$5.2 ext{ } F$	ourth Quarter 2009	5
3.0	RECO	DMMENDATIONS	7
List of	Figur		
Figure 1	0	en Burning Ground/HWMU-13 Potentiometric Surface Map (2 nd Quarter 2009)	
Figure 2		ben Burning Ground/HWMU-13 Potentiometric Surface Map (4 th Quarter 2009)	
List of	Tables	S	
Table 1	Gr	oundwater Elevations – 2009	
Table 2	Ta	rget Analyte Monitoring Results – Calendar Year 2009	
List of	Apper	ndices	
Append	lix A	Field Notes	
Append	lix B	2009 Laboratory Analytical Results (CD-ROM)	
Append	lix C	Constituent Background Values for the Compliance Groundwater Monitorin Program (CD-ROM)	ıg

DAA JN: B03204-07 i February 2010

1.0 INTRODUCTION

This document serves as the Annual Groundwater Monitoring Report for calendar year 2009 for the Open Burning Ground (OBG; also known as Hazardous Waste Management Unit [HWMU] 13) located at the Radford Army Ammunition Plant (Radford AAP) in Radford, Virginia. The Annual Groundwater Monitoring Report was compiled in accordance with the requirements specified in the *Permit for the Treatment of Hazardous Waste by Open Burning* (Permit) dated October 28, 2005. The Annual Groundwater Monitoring Report presents the following set of information: basic information and unit identification, a description of the groundwater monitoring plan, a discussion of groundwater movement, updated potentiometric maps, a table of groundwater elevations, and detailed statistical evaluations of the analytical data. The report evaluates the analytical data from two semiannual sampling events performed during calendar year 2009. Copies of field notes recorded during sample collection are included in **Appendix A**. The laboratory analytical results for the calendar year 2009 semiannual monitoring events are included in **Appendix B**.

The OBG is the waste propellant burning ground. Material that cannot be burned in the Explosive Waste Incinerators is open burned at this Unit. Groundwater monitoring activities for calendar year 2009 were conducted in accordance with the proposed *Groundwater Compliance Monitoring Plan*, which was included in the Class 3 Permit Modification dated August 9, 2007, was reviewed and modified by the VDEQ in a memorandum dated October 24, 2007, and was further revised by the VDEQ following the January 23, 2008 meeting between Radford AAP and the VDEQ. The Class 3 Permit Modification is pending final review for incorporation into the Permit.

DAA JN: B03204-07 1 February 2010

2.0 ANNUAL GROUNDWATER MONITORING REPORT

2.1 Waste Management Unit Information

Unit Name: Open Burning Ground (OBG)

(Hazardous Waste Management Unit 13 [HWMU-13])

Owner/Operator: United States Army/Alliant Techsystems Inc.

Unit Location: Radford AAP Horseshoe Area, Radford, Virginia

Class: Hazardous Waste Management Unit Type: Waste Propellant Burning Ground

2.2 Groundwater Monitoring Plan

Monitoring Network

Upgradient Well: 13MW1, 13MW2

Point of Compliance Wells: 13MW3, 13MW4, 13MW5, 13MW6, 13MW7

Monitoring Status: Compliance Monitoring Program

CY 2009 Monitoring Events:

Second Quarter 2009: April 13-14, 2009 Fourth Quarter 2009: October 19-20, 2009

2.3 Groundwater Movement

The static water level measurements gathered at the OBG during the 2009 monitoring events are summarized in **Table 1**. Annual groundwater fluctuations ranged from 0.46 to 10.3 feet. As shown on the Potentiometric Surface Maps (**Figures 1** and **2**), groundwater movement beneath the site is generally to the south toward the New River.

For the purposes of this report, Darcian flow conditions were assumed for the alluvium and carbonate bedrock beneath the OBG. As a result, the groundwater velocities were calculated by multiplying the hydraulic conductivity (determined from previously conducted slug tests) by the average hydraulic gradient across the site and dividing by an assumed effective porosity for the aquifer materials. The average hydraulic gradient was determined by superimposing three evenly spaced flow line vectors over the Fourth Quarter 2009 Potentiometric Surface Map, measuring their lengths, calculating the head differential over the distances measured, and dividing the head differential by the length of the flow line vectors. The three calculated gradients were then averaged to a single value. Using this method, the average groundwater hydraulic gradient across the site based on Fourth Quarter 2009 groundwater elevations was calculated to be 0.003 ft/ft. Historical slug test data for the site yielded an average hydraulic conductivity of 6.56 x 10⁻⁵ ft/second, which is consistent with literature values for carbonate rock and for clayey, silty sand, and gravel alluvium (Domenico and Schwartz, 1990).

The estimated groundwater velocity across the site was calculated to be approximately 4.25×10^{-2} ft/day or 15.5 ft/year, based on the following:

- An average hydraulic conductivity of 6.56 x 10⁻⁵ ft/second.
- An average hydraulic gradient of 0.003 ft/ft.
- An assumed effective porosity of 0.40, based on a representative range of porosities for carbonate rock and clayey, silty sand and gravel alluvium (Domenico and Schwartz, 1990).

The actual groundwater flow velocities in the carbonate bedrock may vary as much as one to two orders of magnitude from the average velocity presented above depending on water level conditions and the distribution of secondary porosity.

2.4 2009 Groundwater Monitoring Activities

Radford AAP began semiannual Detection monitoring at the OBG after the Permit went into effect in October 2005. During Fourth Quarter 2005, carbon tetrachloride and perchlorate were detected at concentrations above their respective background concentrations, which prompted the need to develop a Compliance monitoring program. As a result, during First Quarter 2006, all wells were sampled for the constituents listed in Appendix IX of 40 CFR Part 264 to determine the Compliance Monitoring List. The hazardous constituents detected during the initial Appendix IX analysis formed the basis for the Compliance Groundwater Monitoring List for the Unit.

Groundwater monitoring activities for calendar year 2009 were conducted in accordance with the proposed *Groundwater Compliance Monitoring Plan* dated February 2007, including the annual monitoring of the point of compliance (POC) wells for the constituents listed in Appendix IX of 40 CFR Part 264. Copies of field notes recorded during sample collection activities are included in **Appendix A**. The groundwater analytical data for the calendar year 2009 semiannual monitoring events were evaluated in accordance with the procedures specified in the proposed *Groundwater Compliance Monitoring Plan*, including comparison to the proposed Groundwater Protection Standards (GPS). As the proposed *Groundwater Compliance Monitoring Plan* is pending final review for incorporation into the Permit, the groundwater analytical data for calendar year 2009 were also compared to the background concentrations for the OBG previously calculated in the *Constituent Background Values for the Compliance Groundwater Monitoring Program* dated February 2007 (a copy of which is included in **Appendix C**).

2.5 Groundwater Analytical Data Evaluation

The groundwater samples collected during the calendar year 2009 events were analyzed for the constituents listed in Attachment V.B (Compliance Groundwater Monitoring List) of the proposed *Groundwater Compliance Monitoring Plan*. Additionally, the groundwater samples collected from the POC wells during Second Quarter 2009 were analyzed for the constituents listed in Appendix IX of 40 CFR Part 264. The constituents detected during the semiannual events and their corresponding concentrations, background values, and proposed GPS are listed

in **Table 2**. The laboratory analytical results for the calendar year 2009 semiannual monitoring events are included in **Appendix B**. The analytical data were validated in accordance with SW-846, USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, and USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review. Data validation reports are included in **Appendix B**. No data were rejected.

2.5.1 Second Quarter 2009

Total barium was detected in all monitoring wells; however, all concentrations were below their respective background concentrations and proposed GPS. Total chromium was detected in all monitoring wells at concentrations below the quantitation limit (QL); however, the detected total chromium concentrations were below the background concentration and the proposed GPS.

Total nickel was detected in upgradient wells 13MW1 and 13MW2 and in POC wells 13MW3, 13MW4, 13MW5, and 13MW6 at concentrations below the QL; however, the detected total nickel concentrations were below the background concentration and the proposed GPS. Total nickel was also detected in POC well 13MW7 at a concentration of 222 μ g/l, which was greater than the background concentration of 5 μ g/l; however, the total nickel concentration detected in POC well 13MW7 was below the proposed GPS for nickel of 313 μ g/l.

Total selenium was detected in upgradient well 13MW1 and in POC wells 13MW5, 13MW6, and 13MW7 at concentrations below the QL; however, the detected total selenium concentrations were below the background concentration and the proposed GPS.

Total zinc was detected in POC wells 13MW6 and 13MW7 at concentrations below the QL; however, the detected total zinc concentrations were below the background concentration and the proposed GPS. Total zinc was also detected in POC well 13MW7 at a concentration of 6.8 μ g/l, which was greater than the background concentration of 5 μ g/l; however, the total zinc concentration detected in POC well 13MW7 was below the proposed GPS for zinc of 4,695 μ g/l.

Perchlorate was detected in POC well 13MW4 at a concentration of 127.3 μ g/l, which was greater than the background concentration of 4 μ g/l and the proposed GPS of 26 μ g/l. Perchlorate was also detected in POC well 13MW6 at a concentration below the QL; however, the perchlorate concentration detected in POC well 13MW6 was below the background concentration and the proposed GPS. These detections of perchlorate are consistent with previous data; however, due to the fact that the concentration detected in POC well 13MW4 is greater than the proposed GPS, Radford AAP is required to establish a Corrective Action Program for perchlorate that meets the requirements of 40 CFR Part 264.100. Radford AAP has submitted a Corrective Action Program for perchlorate, which is pending final review for incorporation into the Permit.

Carbon tetrachloride was detected in POC well 13MW3 at a concentration of 6.6 μ g/l, which was greater than the background concentration and proposed GPS of 5 μ g/l. Carbon tetrachloride was also detected in POC well 13MW5 at a concentration below the QL; however, the carbon tetrachloride concentration detected in POC well 13MW6 was below the background

concentration and the proposed GPS. These detections of carbon tetrachloride are consistent with previous data; however, due to the fact that the concentration detected in POC well 13MW3 is greater than the proposed GPS, Radford AAP is required to establish a Corrective Action Program for carbon tetrachloride that meets the requirements of 40 CFR Part 264.100. Radford AAP has submitted a Corrective Action Program for carbon tetrachloride, which is pending final review for incorporation into the Permit.

Chloroform was detected in POC well 13MW3 at a concentration of 0.6 μ g/l, which was below the background concentration of 1 μ g/l and the proposed GPS of 80 μ g/l. Tetrachloroethene was detected in POC well 13MW7 at a concentration below the QL; however, the detected tetrachloroethene concentration was below the background concentration and the proposed GPS.

Trichloroethene (TCE) was detected in POC wells 13MW3, 13MW4, and 13MW7 at concentrations of 1 μ g/l, 1.5 μ g/l, and 1.4 μ g/l, respectively. These concentrations were equal to or greater than the site-specific background concentration of 1 μ g/l. However, detection of TCE in wells 13MW4 and 13MW7 is consistent with previous data, and the concentrations were below the proposed GPS of 5 μ g/l.

2.5.2 Fourth Quarter 2009

Total barium was detected in all monitoring wells; however, all concentrations were below the background concentration and proposed GPS.

Total chromium was detected in POC well 13MW4 at a concentration of 5.1 μ g/l, which was below the background concentration and the proposed GPS. Total nickel was detected in POC well 13MW7 at a concentration of 5.1 μ g/l, which was greater than the background concentration of 5 μ g/l but below the GPS for nickel of 313 μ g/l.

Total zinc was detected in POC wells 13MW6 and 13MW7 at concentrations of 6.4 μ g/l and 7.8 μ g/l, respectively, which were greater than the background concentration of 5 μ g/l. However, the detected concentrations were below the proposed GPS for zinc of 4,695 μ g/l.

Perchlorate was detected in POC well 13MW4 at a concentration of 132.2 μ g/l, which was greater than the background concentration of 4 μ g/l and the proposed GPS of 26 μ g/l. Perchlorate was also detected in POC well 13MW6 at a concentration of 5.16 μ g/l, which was greater than the background concentration but below the proposed GPS. These detections of perchlorate are consistent with previous data; however, due to the fact that the concentration detected in POC well 13MW4 is greater than the proposed GPS, Radford AAP is required to establish a Corrective Action Program for perchlorate that meets the requirements of 40 CFR Part 264.100. Radford AAP has submitted a Corrective Action Program for perchlorate, which is pending final review for incorporation into the Permit.

Carbon tetrachloride was detected in POC well 13MW3 at a concentration of 5.7 μ g/l, which was greater than the background concentration and proposed GPS of 5 μ g/l. This detection of carbon tetrachloride is consistent with previous data; however, due to the fact that

the concentration detected in POC well 13MW3 is greater than the proposed GPS, Radford AAP is required to establish a Corrective Action Program for carbon tetrachloride that meets the requirements of 40 CFR Part 264.100. Radford AAP has submitted a Corrective Action Program for carbon tetrachloride, which is pending final review for incorporation into the Permit.

Chloroform was detected in POC well 13MW3 at a concentration of 0.7 μ g/l, which was below the background concentration of 1 μ g/l and the proposed GPS of 80 μ g/l.

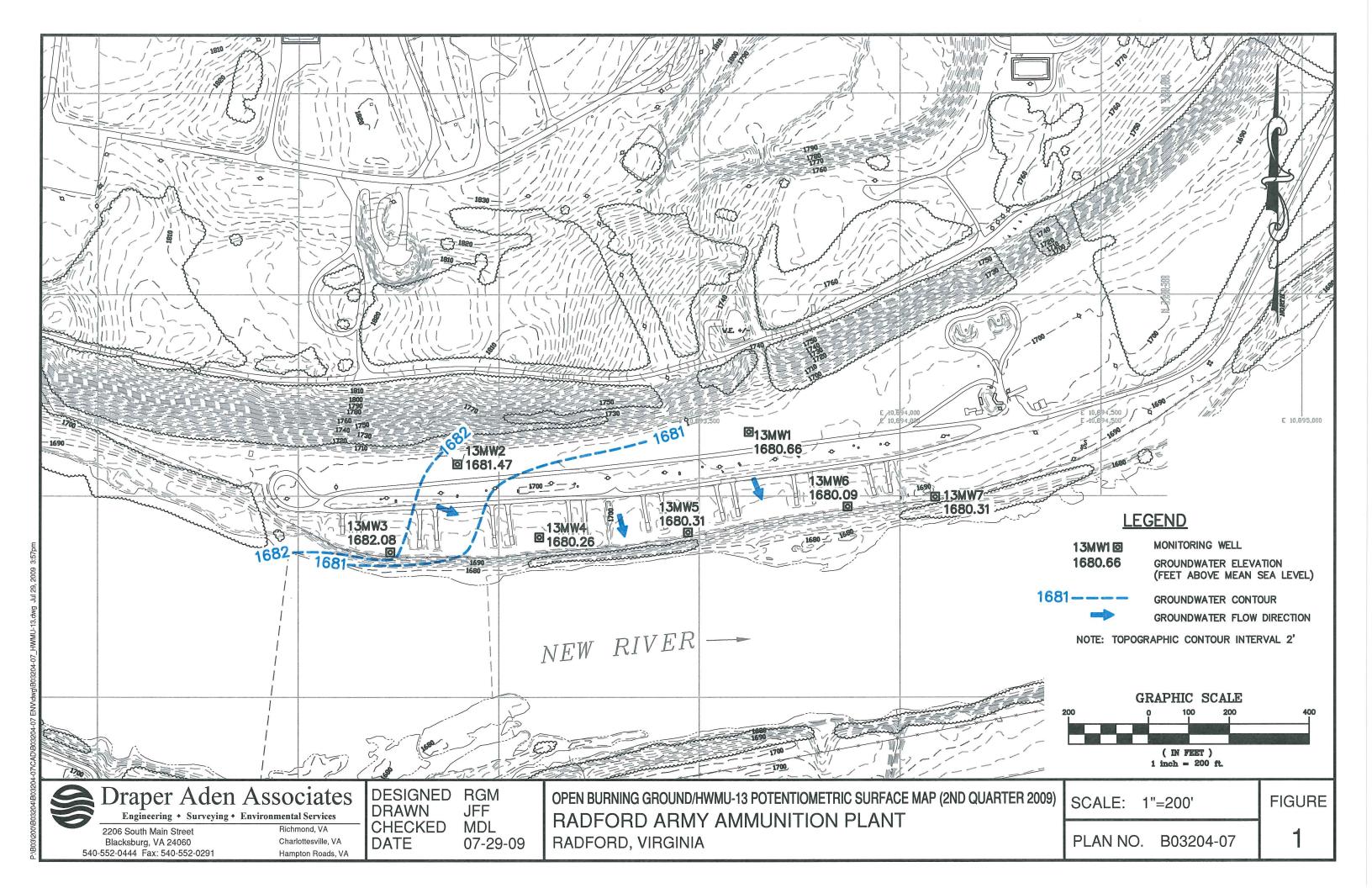
TCE was detected in POC wells 13MW4 and 13MW7 at concentrations of 1.4 μ g/l and 2.1 μ g/l, respectively, which were greater than the background concentration of 1 μ g/l. Additionally, TCE was detected in POC well 13MW3 at a concentration of 0.9 μ g/l, which was below the background concentration of 1 μ g/l. However, detection of TCE in these POC wells is consistent with previous data, and the concentrations were below the proposed GPS of 5 μ g/l.

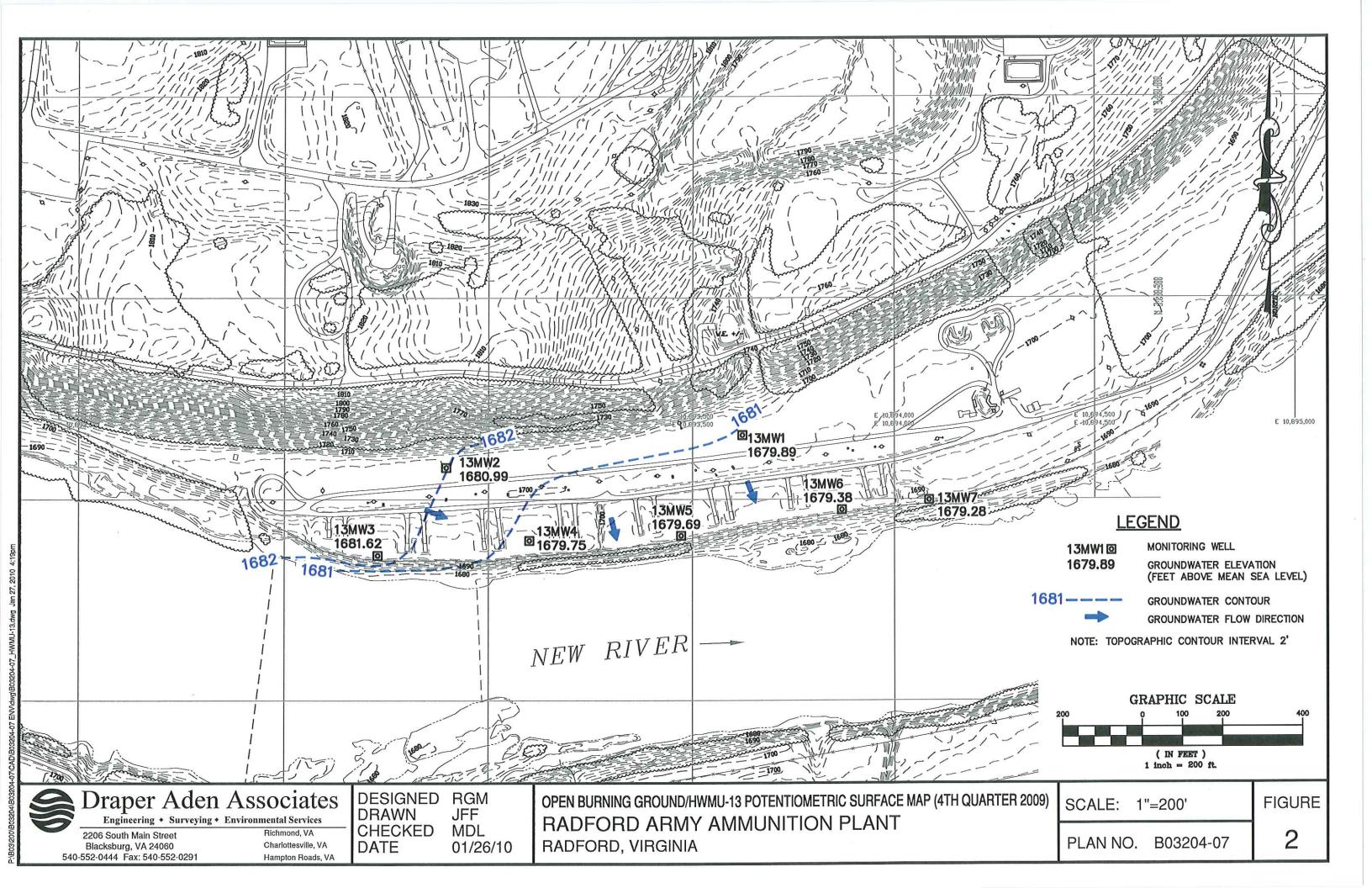
3.0 RECOMMENDATIONS

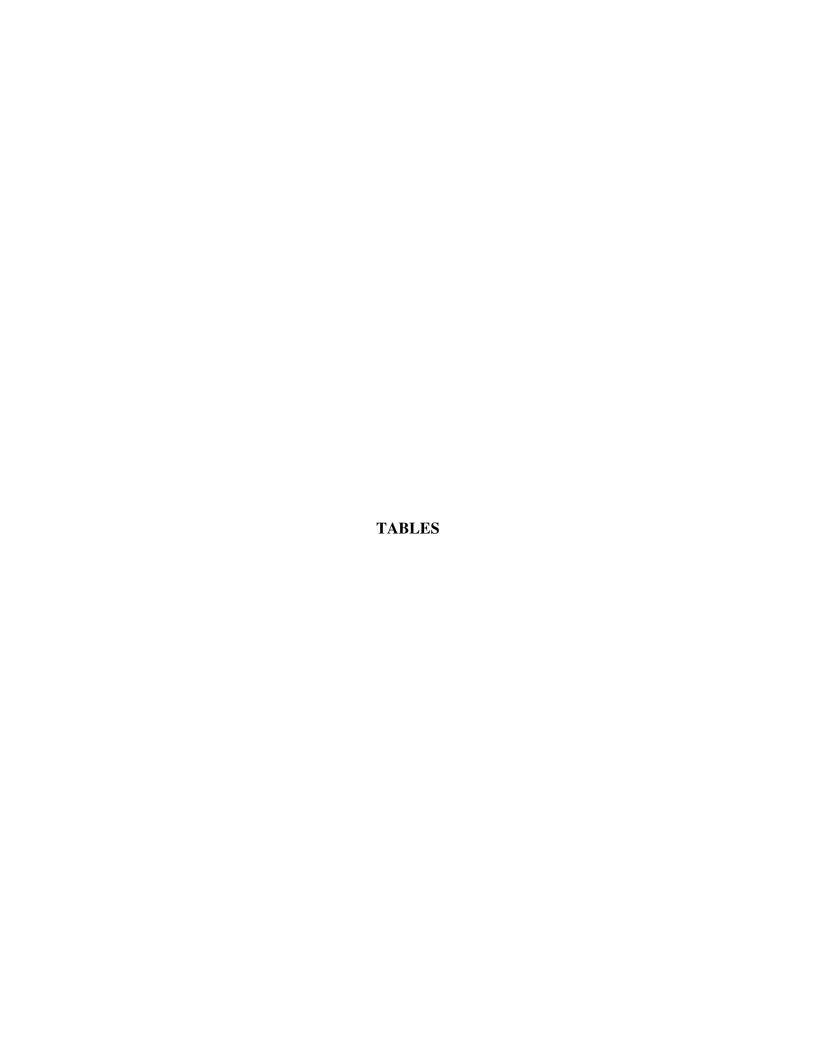
During the calendar year 2009 semiannual groundwater monitoring events, carbon tetrachloride was detected in POC well 13MW3 at concentration greater than the proposed GPS of 5 μ g/l, and perchlorate was detected in POC well 13MW4 at concentrations greater than the proposed GPS of 26 μ g/l. As a result, Radford AAP is required to establish a Corrective Action Program for carbon tetrachloride and perchlorate that meets the requirements of 40 CFR Part 264.100. Radford AAP has submitted a Corrective Action Program for carbon tetrachloride and perchlorate, which is pending final review for incorporation into the Permit.

Radford AAP will continue to monitoring groundwater at the OBG in accordance with the *Groundwater Compliance Monitoring Plan* until the Corrective Action Program is approved and implemented, at which time groundwater monitoring will be conducted in accordance with the Corrective Action and Groundwater Monitoring Program.

SIGNATURES/CERTIFICATIONS


Name:	Ross G. Miller, Senior Project Geologist
Signature:	For I made
Company:	Draper Aden Associates
Address:	2206 South Main Street
City/State/Zip:	Blacksburg, Virginia 24060-6600


Virginia Professional Certification:


I certify that I have prepared or supervised preparation of the attached report, that it has been prepared in accordance with industry standards and practices, and that the information contained herein is truthful and accurate to the best of my knowledge.

Name:	Michael D. Lawless, Environmenta	al Program Manager
	12)	
Signature:	100	
Virginia Professional Certific	cation Type and Number:	PG 832
Company:	Draper Aden Associates	
Address:	2206 South Main Street	
City/State/Zip:	Blacksburg, Virginia 24060-6600	

TABLE 1 GROUNDWATER ELEVATIONS - 2009 OPEN BURNING GROUND (HWMU-13) RADFORD ARMY AMMUNITION PLANT, RADFORD, VIRGINIA

MONITORING	ELEVATION	SECOND QU	ARTER 2009	FOURTH QUARTER 2009			
WELL ID	TOP OF WELL	DTW	GW ELEV	DTW	GW ELEV		
13MW1	1701.46	20.80	1680.66	21.57	1679.89		
13MW2	1702.71	21.24	1681.47	21.72	1680.99		
13MW3	1695.01	12.93	1682.08	13.39	1681.62		
13MW4	1696.58	16.32	1680.26	16.83	1679.75		
13MW5	1696.76	16.45	1680.31	17.07	1679.69		
13MW6	1696.11	16.02	1680.09	16.73	1679.38		
13MW7	1695.51	15.20	1680.31	16.23	1679.28		

NOTES:

DTW: Depth to water from top of casing. GW ELEV: Groundwater elevation. All elevations in feet above mean sea level.

NM: Not measured.

Table 2: Target Analyte Monitoring Results - Calendar Year 2009
Radford Army Ammunition Plant - Open Burning Ground - Groundwater Monitoring
Upgradient wells = 13MW1 and 13MW2

Analyte/Quarter	13MW1 Q	13MW2 Q	13MW3 Q	13MW	4 Q	13MW5 Q	13MW6 Q	13MW7 Q	QL	Background	d Method	GPS
Antimony						CAS# 74	40-36-0					
Second Quarter 2009	U	U	U	U		U	U	U	5	6	6020	6
Fourth Quarter 2009	U	U	U	U		U	U	U	5	6	6020	6
Arsenic						CAS# 74	40-38-2					
Second Quarter 2009	U	U	U	U		U	U	U	5	5	6020	10
Fourth Quarter 2009	U	U	U	U		U	U	U	5	5	6020	10
Barium						CAS# 74	40-39-3					
Second Quarter 2009	120	147	81	J 41.:	5 J	106 J	75.8 J	125 J	1	205.9	6020	2000
Fourth Quarter 2009	115	169	110	55	3	108	104	173	1	205.9	6020	2000
Beryllium						CAS# 74	40-41-7					
Second Quarter 2009	_	_	U	U		U	U	U	1		6020	_
Cadmium						CAS# 74	40-43-9					
Second Quarter 2009	U	U	U	U		U	U	U	1	1	6020	5
Fourth Quarter 2009	U	U	U	U		U	U	U	1	1	6020	5
Chromium				U		CAS# 74			1		0020	
Second Quarter 2009	9 4 J	1.9	J 1.6	J 1.6	J	3.3 J	1.4 J	1.4 J	5	112	6020	112
Fourth Quarter 2009	U T	1.9 . U	J 1.0 U	5.1		J.J J U	1.4 J U	1.4 J U	5	112	6020	112
Cobalt	- 0			3.1		CAS# 74				112	0020	112
Second Quarter 2009			U	U		U	U	U	5		6020	
Copper	-	-	U	U		CAS # 74		U	3		0020	
			TT					T.T.			(020	
Second Quarter 2009	-	-	U	U		U CAS # 74	30-02-1	U	5		6020	
Lead												
Second Quarter 2009		U	U	U		U	U	U	5	14	6020	15
Fourth Quarter 2009	U	U	U	U		U CAS # 74	U J	U	5	14	6020	15
Mercury						CAS# 74	39-97-0					
Second Quarter 2009		U	U	U		U	U	U	0.5		7470A	2.52
Fourth Quarter 2009	U	U	U	U		U	U	U	0.5	2.52	7470A	2.52
Nickel						CAS # 74	40-02-0					
Second Quarter 2009	2.4 J	2.2	J 2.1	J 2.6	J	2.9 J	3.7 J	222	5	5	6020	313
Fourth Quarter 2009	U	U	U	U		U	U	51	5	5	6020	313
Selenium						CAS # 77	82-49-2					
Second Quarter 2009	4 J	U	U	U		2.1 J	3.2 J	2.3 J	5	5	6020	50
Fourth Quarter 2009	U	U	U	U		U	U	U	5	5	6020	50
Silver						CAS# 74	40-22-4					
Second Quarter 2009	U	U	U	U		U	U	U	2	2.4	6020	78.3
Fourth Quarter 2009	U	U	U	U		U	U	U	2	2.4	6020	78.3
Thallium						CAS# 74	40-28-0					
Second Quarter 2009	_	-	U	U		U	U	U	2		6020	_
Tin						CAS# 74	40-31-5					
Second Quarter 2009		_	U	J U	J	U J	U J	U J	10		6020	
Vanadium						CAS# 74			- 10		0020	
Second Quarter 2009			U	U		U	U	U	5		6020	
Zinc	<u>-</u>		U	U		CAS# 74		U	3		0020	
				2.1				6.0			6020	4605
Second Quarter 2009		U	U	3.1	J	U	2.8 J	6.8	5	5	6020	4695
Fourth Quarter 2009	U	U	U	U		U CAS# 18	6.4	7.8	5	5	6020	4695
Sulfide			_									
Second Quarter 2009	-	-	U	U		U	U	U	3000	Ú	9034	-

Table 2: Target Analyte Monitoring Results - Calendar Year 2009
Radford Army Ammunition Plant - Open Burning Ground - Groundwater Monitoring
Upgradient wells = 13MW1 and 13MW2

Second Quarter 2009	Analyte/Quarter	13MW1 Q	13MW2 Q	13MW3 Q	13	BMW4 Q			13MW7 Q	QL	Backgrou	ind Method	GPS
Fourh Quarter 2009	Perchlorate						CAS # 1	4797-73-0					
Second Quarter 2009 -	Second Quarter 2009	U	U	U		127.3	U	1.33 J	U	4	4	E314.0	26
Second Quarter 2009 -		U	U	U		132.2			U	4	4	E314.0	26
Second Quarter 2009 -	Cyanide						CAS # 5	7-12-5					
Second Quarter 2009 - - U J U J U J U J U J U J U J S S270C -		-	-	U		U			U	20		9012A	-
Second Quarter 2009 - - U J U J U J U J U J U J U J S \$270C -	Acenaphthene						CAS# 8	3-32-9					
Second Quarter 2009 U U U U U U U S S 8200B	Second Quarter 2009	-	-	U	J	U.			U J	5		8270C	-
Second Quarter 2009 - - U U U U U U U S S260B -	Acenaphthylene						CAS# 2	08-96-8					
Second Quarter 2009 - - U U U U U U S 8260B -	Second Quarter 2009	-	-	U	J	U.	U J	U J	U J	5		8270C	-
Second Quarter 2009	Acetone						CAS# 6	7-64-1					
Second Quarter 2009 - - U U U U U 20 8260B -	Second Quarter 2009	-	-	U		U	U	U	U	5		8260B	-
Second Quarter 2009 U	Acetonitrile						CAS # 7	5-05-8					
Second Quarter 2009 U U U U U U U U U	Second Quarter 2009	-	-	U		U	U	U	U	20		8260B	-
Fourth Quarter 2009	Acetophenone						CAS# 9	8-86-2					
Fourth Quarter 2009	Second Quarter 2009	U	U	U		U	U	U	U	5	10	8270C	224
Second Quarter 2009 -	•	U	U	U		U	U	U			10		224
Second Quarter 2009 - - U J U J U J U J U J U J 25 8260B -	2-Acetylaminofluorei	ne					CAS # 5	3-96-3					
Second Quarter 2009 - - U J U J U J U J U J U J 25 8260B -	Second Quarter 2009	_	-	U		U	U	U	U	5		8270C	_
Second Quarter 2009 - - U U U U U U U U	Acrolein						CAS # 1	07-02-8					
Second Quarter 2009 - - U U U U U U U U	Second Quarter 2009	-	-	U	J	U.	UJ	U J	U J	25		8260B	_
Second Quarter 2009 - - U U U U U U U U	Acrylonitrile												
Second Quarter 2009 - - U U U U U U U U	Second Quarter 2009	_	_	U		U	U	U	U	5		8260B	
Allyl chloride	Aldrin												
Allyl chloride	Second Quarter 2009	_	_	IJ		U	U	IJ	U	0.05		8081A	
Second Quarter 2009 - - U U U U U U U U	·									0.00		000111	
CAS# 92-67-1		_	_	II		II	II	II	II	0.5		8260B	
Second Quarter 2009 -										0.5		0200 D	
Second Quarter 2009 CAS# 62-53-3		_		TI		II	ĪI	ĪĪ	II	5		8270C	
Second Quarter 2009 - - U U U U U U U U		-		U		U			U	3		0270C	-
Anthracene				T.1		T.1	T T	T T	TT			92700	
Second Quarter 2009 - - U U U U U U U U		-	-	U		U			U	3		82/0C	-
Second Quarter 2009 -									••			00500	
Second Quarter 2009 -		-	-	U		U			U	5		8270C	-
Second Quarter 2009 U U U U U U U U U													
Second Quarter 2009 U U U U U U U U U		-	-	U		U			U	5		8270C	-
Fourth Quarter 2009													
Second Quarter 2009 U U U U U U U U U	•												
Second Quarter 2009 U U U U U U U U U		U	U	U		U			U	0.5	5	8260B	5
Fourth Quarter 2009													
Second Quarter 2009													
Second Quarter 2009 - - U U U U U U 5 8270C Benzo[a]anthracene CAS # 56-55-3 Second Quarter 2009 U U U U U U U U 5 10 8270C 0.0917		U	U	U		Ú			U	0.5	5	8260B	5
Benzo[a]anthracene CAS # 56-55-3 Second Quarter 2009 U U U U U U U 5 10 8270C 0.0917													
Second Quarter 2009 U U U U U U U U 5 10 8270C 0.0917		-	-	U		U			U	5		8270C	
							CAS# 5	6-55-3					
Fourth Quarter 2009 U U U U U U U U 5 10 8270C 0.0917													0.0917
	Fourth Quarter 2009	U	U	U		U	U	U	U	5	10	8270C	0.0917

Table 2: Target Analyte Monitoring Results - Calendar Year 2009
Radford Army Ammunition Plant - Open Burning Ground - Groundwater Monitoring
Upgradient wells = 13MW1 and 13MW2

Analyte/Quarter	13MW1 Q	13MW2 Q	13MW3 Q	13MW4 Q	13MW5 Q	13MW6 Q	13MW7 Q	QL	Backgroui	nd Method	GPS
Benzo[b]fluoranthe	ne				CAS# 20	05-99-2					
Second Quarter 2009	U	U	U	U	U	U	U	5	10	8270C	0.0917
Fourth Quarter 2009	U	U	U	U	U	U	U	5	10	8270C	0.0917
Benzo[k]fluoranthe	ne				CAS# 20	07-08-9					
Second Quarter 2009	U J	U J		J U J		U J	U J	5	10	8270C	0.917
Fourth Quarter 2009	U	U	U	U	CAS# 50	U	U	5	10	8270C	0.917
Benzo[a]pyrene											
Second Quarter 2009	U	U	U	U	U	U	U	5	10	8270C	0.2
Fourth Quarter 2009	U	U	U	U	U CAS# 19	U 21-24-2	U	5	10	8270C	0.2
Benzo[ghi]perylene								_			
Second Quarter 2009	-	-	U	U	U CAS# 31	U	U	5		8270C	
alpha-BHC											
Second Quarter 2009	-	-	U	U	U CAS# 31	U	U	0.05		8081A	-
beta-BHC					CAS# 31	19-60-7					
Second Quarter 2009	-	-	U	U	U	U	U	0.05		8081A	
delta-BHC					CAS# 31	19-86-8					
Second Quarter 2009	-	-	U	U	U	U	U	0.05		8081A	
gamma-BHC					CAS# 58	3-89-9					
Second Quarter 2009	-	-	U	U	U	U	U	0.05		8081A	
bis(2-Chloro-1-meth	ylethyl)et	her			CAS# 10	08-60-1					
Second Quarter 2009	-	-	U	U	U	U	U	5		8270C	
bis(2-Chloroethoxy)	methane				CAS# 11	11-91-1					
Second Quarter 2009	-	-	U	U	U	U	U	5		8270C	
bis(2-Chloroethyl) e	ther				CAS# 11	11-44-4					
Second Quarter 2009	-	-	U	J U J		U J	U J	5		8270C	
bis(2-Ethylhexyl)pht	halate				CAS # 11	17-81-7					
Second Quarter 2009	U	U	U	U	U	U	U	5	6	8270C	6
Fourth Quarter 2009	U	U	U	U	U	U	U	5	6	8270C	6
Bromochlorometha	ne				CAS# 74	1-97-5					
Second Quarter 2009	-	-	U	U	U	U	U	0.5		8260B	
Bromodichlorometh	nane				CAS # 75	5-27-4					
Second Quarter 2009	-	-	U	U	U	U	U	0.5		8260B	
Bromoform					CAS # 75	5-25-2					
Second Quarter 2009	-	-	U	U	U	U	U	0.5		8260B	
Bromomethane					CAS# 74	1-83-9					
Second Quarter 2009	U	U	U	U	U	U	U	0.5	1	8260B	3.13
Fourth Quarter 2009	U	U	U	U	U	U	U	0.5	1	8260B	3.13
4-Bromophenyl phe	nyl ether				CAS# 10	01-55-3					
Second Quarter 2009	-	-	U	U	U	U	U	5		8270C	
2-Butanone					CAS# 78	3-93-3					
Second Quarter 2009	-	-	U	U	U	U	U	5		8260B	-
Butyl benzyl phthala	ate				CAS# 85	5-68-7					
Second Quarter 2009	U	U	U	U	U	U	U	5	10	8270C	3130
Fourth Quarter 2009	U	U	U	U	U	U	U	5	10	8270C	3130
Carbon disulfide			-		CAS# 75	5-15-0					
Second Quarter 2009	-	-	U	U	U	U	U	0.5		8260B	-
-											

Table 2: Target Analyte Monitoring Results - Calendar Year 2009
Radford Army Ammunition Plant - Open Burning Ground - Groundwater Monitoring
Upgradient wells = 13MW1 and 13MW2

Analyte/Quarter	13MW1 Q	13MW2 Q	13MW3 Q	2 13	MW4	Q	13MW5 Q	13MW6 Q	13MW7 Q	QL B	ackgrou	nd Method	GPS
Carbon tetrachloride)						CAS# 56-	23-5					
Second Quarter 2009	U	U	6.6	J	U		0.1 J	U	U	0.5	5	8260B	5
Fourth Quarter 2009	U	U	5.7	J	U		U	U	U	0.5	5	8260B	5
Chlordane							CAS# 57-	74-9					
Second Quarter 2009	-	-	U		U		U	U	U	0.86		8081A	-
p-Chloroaniline							CAS# 106	5-47-8					
Second Quarter 2009	-	-	U	J	U	J	U J	U J	U J	5		8270C	-
Chlorobenzene							CAS# 108	3-90-7					
Second Quarter 2009	U	U	U		U		U	U	U	0.5	5	8260B	100
Fourth Quarter 2009	U	U	U		U		U	U	U	0.5	5	8260B	100
Chlorobenzilate							CAS# 510)-15-6					
Second Quarter 2009	_	-	U	J	U	J	UЈ	U J	UJ	5		8270C	_
Chloromethane							CAS# 74-						
Second Quarter 2009	U	U	U		U		U	U	U	0.5	5	8260B	58.1
Fourth Quarter 2009	U	U	U		U		U	U	U	0.5	5	8260B	58.1
p-Chloro-m-cresol							CAS# 59-			0.0		22001	23.1
Second Quarter 2009	_	_	U		U		U	U	U	5		8270C	
Chloroethane			U		- 0		CAS # 75-		U	3		6270C	-
			T T				TT	T.T.	TT	0.5		00600	
Second Quarter 2009 Chloroform	-	-	U		U		CAS # 67-	66-3	U	0.5		8260B	-
Second Quarter 2009	U	U	0.6	J	U		U	U	U	0.5	1	8260B	80
Fourth Quarter 2009	U	U	0.7		U		U CAS# 91-	U 58-7	U	0.5	1	8260B	80
2-Chloronaphthalene	•												
Second Quarter 2009	-	-	U	J	U	J	U J	U J	U J	5		8270C	-
2-Chlorophenol							CAS# 95-	57-8					
Second Quarter 2009	U	U	U		U		U	U	U	5	10	8270C	11.2
Fourth Quarter 2009	U	U	U		U		U	U	U	5	10	8270C	11.2
4-Chlorophenyl pher	nyl ether						CAS # 700	15-72-3					
Second Quarter 2009	-	-	U	J	U	J	U J	U J	U J	5		8270C	-
Chloroprene							CAS# 126	5-99-8					
Second Quarter 2009	-	-	U		U		U	U	U	0.5		8260B	-
Chrysene							CAS# 218	3-01-9					
Second Quarter 2009	-	-	U	J	U	J	U J	U J	U J	5		8270C	-
Diethyl phthalate							CAS# 84-	66-2					
Second Quarter 2009	U	U	U		U		U	U	U	5	10	8270C	12500
Fourth Quarter 2009	U	U	U		U		U	U	U	5	10	8270C	12500
2,4-Dinitrotoluene							CAS# 121	1-14-2					
Second Quarter 2009	U	U	U		U		U	U	U	5	10	8330	31.3
Fourth Quarter 2009	U	U	U		U		U	U	U	5	10	8330B	31.3
p-Phenylenediamine							CAS# 106						
Second Quarter 2009	_	_	U	J	U	J	U J	U J	U J	50		8270C	
Diphenylamine				,		,	CAS # 122		0 3	30		02700	
Second Quarter 2009	U	U	U		U		U	U	U	5	10	8270C	391
Fourth Quarter 2009	U	U	U		U		U	U	U	5	10	8270C 8270C	391
2,4-Dichlorophenoxy					U		CAS# 94-			J	10	02700	371
			T T		ΙT				I T			0151 A	
Second Quarter 2009 4,4'-DDD	-	-	U		U		U CAS # 72-	U 54-8	U	5		8151A	-
									••			0001:	
Second Quarter 2009	-	-	U		U		U	U	U	0.1		8081A	-

Table 2: Target Analyte Monitoring Results - Calendar Year 2009
Radford Army Ammunition Plant - Open Burning Ground - Groundwater Monitoring
Upgradient wells = 13MW1 and 13MW2

Analyte/Quarter	13MW1 Q	13MW2 Q	13MW3 Q	13MW4	<i>Q 13M</i> W	V5 Q	13MW6 Q	13MW7 Q	QL	Backgrou	nd Method	GPS
4,4'-DDE					CAS	s# 72-	-55-9					
Second Quarter 2009	-	-	U	U	U		U	U	0.	1	8081A	-
4,4'-DDT					CAS	# 50-	-29-3					
Second Quarter 2009	-	-	U	U	U		U	U	0.	1	8081A	-
Diallate					CAS	# 23	03-16-4					
Second Quarter 2009	-	-	U	J U		J	U J	U J	5		8270C	-
Dibenz(a,h)anthrace	ene				CAS	# 53-	-70-3					
Second Quarter 2009	U	U	U	U	U		U	U	5	10	8270C	0.00917
Fourth Quarter 2009	U	U	U	U	U		U	U	5	10	8270C	0.00917
Dibenzofuran					CAS	# 132	2-64-9					
Second Quarter 2009		U.		J U		J	U J	U J	5		8270C	10
Fourth Quarter 2009	U	U	U	U	U	s# 12.	U	U	5	10	8270C	10
Dibromochlorometh												
Second Quarter 2009		-	U	U	U	s# 96-	U	U	0.:	5	8260B	
1,2-Dibromo-3-chlo	ropropane)			CAS	# 96	-12-8					
Second Quarter 2009	-	-	U	U	U		U	U	0.:	5	8260B	-
1,2-Dibromoethane					CAS	# 100	6-93-4					
Second Quarter 2009	-	-	U	U	U		U	U	0.:	5	8260B	-
Dibromomethane					CAS	s# 74-	-95-3					
Second Quarter 2009		-	U	U	U		U	U	0.:	5	8260B	-
1,2-Dichlorobenzen	е				CAS	# 95	-50-1					
Second Quarter 2009		-	U	U	U		U	U	0.:	5	8260B	
1,3-Dichlorobenzen	е				CAS	s# 54	1-73-1					
Second Quarter 2009	_	-	U	U	U		U	U	0.:	5	8260B	-
1,4-Dichlorobenzen	е				CAS	# 10	6-46-7					
Second Quarter 2009	_	-	U	U	U		U	U	0.:	5	8260B	-
3,3'-Dichlorobenzid	ine				CAS	S# 91-	-94-1					
Second Quarter 2009	-	-	U	U	U	i	U	U	5		8270C	-
trans-1,4-Dichloro-2	2-butene				CAS	# 11	0-57-6					
Second Quarter 2009	_	-	U	J U		J	U J	U J	5		8260B	-
Dichlorodifluorome	thane				CAS	# 75	-71-8					
Second Quarter 2009	_	-	U	U	U		U	U	0.:	5	8260B	-
1,1-Dichloroethane					CAS	s# 75-	-34-3					
Second Quarter 2009	-	-	U	U	U	í	U	U	0.:	5	8260B	-
1,2-Dichloroethane					CAS	# 10	7-06-2					
Second Quarter 2009	U	U	U	U	U	ĺ	U	U	0.:	5 1	8260B	5
Fourth Quarter 2009	U	U	U	U	U		U	U	0.:	5 1	8260B	5
1,1-Dichloroethene					CAS	s# 75-	-35-4					
Second Quarter 2009	U	U	U	U	U	i	U	U	0.:	5 1	8260B	7
Fourth Quarter 2009	U	U	U	U	U		U	U	0.:	5 1	8260B	7
trans-1,2-Dichloroe	thene				CAS	# 15	6-60-5					
Second Quarter 2009	_	-	U	U	U		U	U	0.:	5	8260B	
2,4-Dichlorophenol					CAS	# 12	0-83-2					
Second Quarter 2009	U	U	U	U	U		U	U	5	10	8270C	47
Fourth Quarter 2009	U	U	U	U	U		U	U	5	10	8270C	47
2,6-Dichlorophenol					CAS	s# 87-	7-65-0					
Second Quarter 2009	-	-	U	U	U		U	U	5		8270C	-

Table 2: Target Analyte Monitoring Results - Calendar Year 2009
Radford Army Ammunition Plant - Open Burning Ground - Groundwater Monitoring
Upgradient wells = 13MW1 and 13MW2

Analyte/Quarter	13MW1 Q	13MW2 Q	13MW3 Q	13MW4	Q	13MW5 Q	13MW6 Q	13MW7 Q	QL I	Backgrou	nd Method	GPS
cis-1,3-Dichloropro	pene					CAS# 100	061-01-5					
Second Quarter 2009	-	-	U	U		U	U	U	0.5		8260B	-
trans-1,3-Dichlorop	ropene					CAS# 10	061-02-6					
Second Quarter 2009	_	-	U	U		U	U	U	0.5		8260B	-
Dieldrin						CAS# 60-	-57-1					
Second Quarter 2009	-	-	U	U		U	U	U	0.1		8081A	-
1,2-Dichloropropan	е					CAS # 78-	-87-5					
Second Quarter 2009	_	-	U	U		U	U	U	0.5		8260B	
O,O-Diethyl O-2-pyr	azinyl					CAS# 29	7-97-2					
Second Quarter 2009	-	-	U	U		U	U	U	5		8270C	-
Dimethoate						CAS# 60-	-51-5					
Second Quarter 2009	-	-	U	J U	J	U J	U J	U J	5		8270C	-
p-(Dimethylamino)a	zobenzen	е				CAS# 60-	-11-7					
Second Quarter 2009	-	-	U	U		U	U	U	5		8270C	-
7,12-Dimethylbenz[a	a]anthrace	ene				CAS# 57-	-97-6					
Second Quarter 2009	-	-	U	U		U	U	U	5		8270C	-
3,3'-Dimethylbenzid	ine					CAS# 11	9-93-7					
Second Quarter 2009	U J	U J	U	J U	J	U J	U J	U J	5	10	8270C	10
Fourth Quarter 2009	U	U	U	U		U	U	U	5	10	8270C	10
a,a-Dimethylphenet	hylamine					CAS# 12	2-09-8					
Second Quarter 2009	-	-	U	U		U	U	U	50		8270C	-
2,4-Dimethylphenol						CAS # 10	5-67-9					
Second Quarter 2009	-	-	U	U		U	U	U	5		8270C	-
Dimethyl phthalate						CAS# 13	1-11-3					
Second Quarter 2009	U	U	U	U		U	U	U	5	10	8270C	10
Fourth Quarter 2009	U	U	U	U		U CAS# 84-	U 74.2	U	5	10	8270C	10
Di-n-butyl phthalate												
Second Quarter 2009		U	U	U		U	U	U	5	10	8270C	1570
Fourth Quarter 2009 m-Dinitrobenzene	U	U	U	U		U CAS# 99-	-65-0	U	5	10	8270C	1570
	TT	TT	T.T.			TT	U	TT	2.5	2.5	9220	1 57
Second Quarter 2009 Fourth Quarter 2009	U U	U U	U U	U U		U U	U	U U	2.5 2.5	2.5 2.5	8330 8330B	1.57 1.57
4,6-Dinitro-o-cresol	0					CAS # 53-			2.3	2.3	0330 B	1.57
Second Quarter 2009	_	_	U	J U	J	U J	U J	U J	10		8270C	
2,4-Dinitrophenol					-	CAS# 51-		<u> </u>	10		02700	
Second Quarter 2009	_	_	U	J U	J	U J	U J	U J	10		8270C	
2,6-Dinitrotoluene						CAS# 600			- 10		02700	
Second Quarter 2009	U	U	U	U		U	U	U	5	5	8330	15.7
Fourth Quarter 2009	U	U	U	U		U	U	U	5	5	8330B	15.7
Dinoseb						CAS# 88-	-85-7					
Second Quarter 2009	_	-	U	U		U	U	U	2.5		8151A	
Di-n-octyl phthalate	!					CAS# 11	7-84-0					
Second Quarter 2009	U	U	U	U		U	U	U	5	10	8270C	313
Fourth Quarter 2009	U	U	U	U		U	U	U	5	10	8270C	313
1,4-Dioxane						CAS# 123	3-91-1					
Second Quarter 2009	-	-	U	U		U	U	U	100		8260B	-

Table 2: Target Analyte Monitoring Results - Calendar Year 2009
Radford Army Ammunition Plant - Open Burning Ground - Groundwater Monitoring
Upgradient wells = 13MW1 and 13MW2

Analyte/Quarter	13MW1 Q	13MW2 Q	13MW3 Q	13MW4 Q	13MW5 Q	13MW6 Q	13MW7 Q	QL Be	ackground	Method	GPS
Disulfoton					CAS# 29	08-04-4					
Second Quarter 2009	-	-	U	U	U	U	U	5		8270C	
Endosulfan I					CAS# 95	9-98-8					
Second Quarter 2009	-	-	U	U	U	U	U	0.05		8081A	
Endosulfan II					CAS# 33	213-65-9					
Second Quarter 2009	-	-	U	U	U	U	U	0.1		8081A	-
Endosulfan sulfate					CAS# 10	31-07-8					
Second Quarter 2009	-	-	U	U	U	U	U	0.1		8081A	_
Endrin					CAS# 72	2-20-8					
Second Quarter 2009	-	-	U	U	U	U	U	0.1		8081A	
Endrin aldehyde					CAS# 74	21-93-4					
Second Quarter 2009	-	-	U	U	U	U	U	0.1		8081A	_
Ethylbenzene					CAS# 10	0-41-4					
Second Quarter 2009	-	-	U	U	U	U	U	0.5		8260B	_
Ethyl methacrylate					CAS# 97	'-63-2					
Second Quarter 2009	-	-	U	U	U	U	U	0.5		8260B	_
Ethyl methanesulfor	nate				CAS# 62	2-50-0					
Second Quarter 2009	_	_	U	U	U	U	U	5		8270C	
Famphur					CAS # 52						
Second Quarter 2009	_	_	U	J U J	U J	U J	U J	5		8270C	
Fluoranthene					CAS# 20						
Second Quarter 2009	U	U	U	U	U	U	U	5	10	8270C	626
Fourth Quarter 2009	U	U	U	U	U	U	U	5	10	8270C	626
Fluorene					CAS# 86	G-73-7					
Second Quarter 2009	-	-	U	J U J	U J	U J	U J	5		8270C	
Heptachlor					CAS# 76	i-44-8					
Second Quarter 2009	-	-	U	U	U	U	U	0.05		8081A	
Heptachlor epoxide					CAS# 10	124-57-3					
Second Quarter 2009	_	-	U	U	U	U	U	0.05		8081A	_
Hexachlorobenzene					CAS# 11						
Second Quarter 2009	_	_	U	U	U	U	U	5		8270C	
Hexachlorobutadien	ie				CAS# 87					02700	
Second Quarter 2009	_	_	U	U	U	U	U	0.5		8260B	_
Hexachlorocycloper	ntadiene				CAS # 77			0.5		0200B	
Second Quarter 2009	_	_	U	U	U	U	U	5		8270C	
Hexachloroethane					CAS# 67					02700	
Second Quarter 2009	U	U	U	U	U	U	U	5	10	8270C	4.78
Second Quarter 2009	U	U	U	U	U	U	U	0.5	10	8260B	4.78
Fourth Quarter 2009	U	U	U	U	U	U	U	5	10	8270C	4.78
Fourth Quarter 2009	U	U	U	U	U	U	U	0.5	10	8260B	4.78
Hexachlorophene					CAS# 70)-30-4					
Second Quarter 2009			U	J U J	U J	U J	U J	500		8270C	-
Hexachloropropene			-		CAS# 18	88-71-7					
Second Quarter 2009			U	J U J	U J	U J	U J	5		8270C	
2-Hexanone					CAS# 59	1-78-6					
Second Quarter 2009	-	-	U	U	U	U	U	5		8260B	-

Table 2: Target Analyte Monitoring Results - Calendar Year 2009
Radford Army Ammunition Plant - Open Burning Ground - Groundwater Monitoring
Upgradient wells = 13MW1 and 13MW2

Analyte/Quarter	13MW1 Q	13MW2 Q	13MW3 Q	13MW4 Q	13MW5 Q	13MW6 Q	13MW7 Q	QL	Backgrou	nd Method	GPS
Indeno[1,2,3-cd]pyre	ene				CAS# 19	3-39-5					
Second Quarter 2009	U	U	U	U	U	U	U	5	10	8270C	0.0917
Fourth Quarter 2009	U	U	U	U	U	U	U	5	10	8270C	0.0917
lodomethane					CAS# 74	-88-4					
Second Quarter 2009	-	-	U	U	U	U	U	0.5		8260B	-
Isobutyl alcohol					CAS # 78	1-83-1					
Second Quarter 2009	-	-	U	U	U	U	U	25		8260B	
Isodrin					CAS # 46	5-73-6					
Second Quarter 2009	-	-	U	U	U CAS# 78	U	U	5		8270C	
Isophorone					CAS# /8	1-59-1					
Second Quarter 2009	-	-	U	U	U	U	U	5		8270C	-
Isosafrole					CAS# 12	20-58-1					
Second Quarter 2009	-	-	U	U	U	U	U	5		8270C	-
Kepone					CAS# 14	3-50-0					
Second Quarter 2009	-	-	U	J U J		U J	U J	5		8270C	-
Methacrylonitrile					CAS# 12	26-98-7					
Second Quarter 2009	-	-	U	U	U	U	U	5		8260B	-
Methylene chloride					CAS# 75	i-09-2					
Second Quarter 2009	U	U	U	U	U	U	U	0.5	5	8260B	5
Fourth Quarter 2009	U	U	U	U	U	U	U	0.5	5	8260B	5
Methapyrilene					CAS# 91	-80-5					
Second Quarter 2009	-	-	U	J U J		U J	U J	5		8270C	-
Methoxychlor					CAS # 72	?-43-5					
Second Quarter 2009	-	-	U	U	U	U	U	0.5		8081A	-
3-Methylcholanthren	ne				CAS# 56	i-49-5					
Second Quarter 2009	-	-	U	U	U	U	U	5		8270C	-
Methyl methacrylate					CAS# 80	1-62-6					
Second Quarter 2009	-	-	U	U	U	U	U	0.5		8260B	-
Methyl methane sulf	onate				CAS# 66	i-27-3					
Second Quarter 2009	-	-	U	U	U	U	U	5		8270C	
2-Methylnaphthalene	9				CAS# 91	-5/-6					
Second Quarter 2009	-	-	U	U	U	U	U	5		8270C	-
Methyl parathion					CAS# 29	18-00-0					
Second Quarter 2009	-	-	U	J U J		U J	U J	5		8270C	-
4-Methyl-2-pentanor	ne				CAS# 10	18-10-1					
Second Quarter 2009	-	-	U	U	U	U	U	5		8260B	-
2-Methylphenol					CAS# 95						
Second Quarter 2009	-	-	U	U	U	U	U	5		8270C	-
3 & 4-Methylphenol					CAS# m	108-39-4 p 106	-44-5				
Second Quarter 2009	U	U	U	U	U	U	U	10	20	8270C	78.3
Fourth Quarter 2009	U	U	U	U	U CAS# 91	U	U	10	20	8270C	78.3
Naphthalene											
Second Quarter 2009	U	U	U	U	U	U	U	0.5	1	8260B	2.33
Fourth Quarter 2009	U	U	U	U	U CAS# 13	U 0-15-4	U	0.5	1	8260B	2.33
1,4-Naphthoquinone			<u> </u>				••			00707	
Second Quarter 2009	-	-	U	U	U	U	U	5		8270C	-

Table 2: Target Analyte Monitoring Results - Calendar Year 2009
Radford Army Ammunition Plant - Open Burning Ground - Groundwater Monitoring
Upgradient wells = 13MW1 and 13MW2

Analyte/Quarter	13MW1 Q	13MW2 Q	13MW3 Q	13MV	74 Q	13MW5 Q	13MW6 Q	13MW7 Q	QL	Background	d Method	GPS
1-Naphthylamine						CAS# 13	4-32-7					
Second Quarter 2009	-	-	U	U		U	U	U	5		8270C	-
2-Naphthylamine						CAS# 91	-59-8					
Second Quarter 2009	-	-	U	J U	J	U J	U J	U J	5		8270C	-
o-Nitroaniline						CAS# 88	-74-4					
Second Quarter 2009	-	-	U	U		U	U	U	10		8270C	-
m-Nitroaniline						CAS# 99	-09-2					
Second Quarter 2009	-	-	U	U		U	U	U	10		8270C	-
p-Nitroaniline						CAS# 10	0-01-6					
Second Quarter 2009	-	-	U	U		U	U	U	10		8270C	-
Nitrobenzene						CAS# 98	-95-3					
Second Quarter 2009	U	U	U	U		U	U	U	5	10	8270C	1.3
Fourth Quarter 2009	U	U	U	U		U	U	U	5	10	8270C	1.3
Nitroglycerin						CAS# 55	-63-0					
Second Quarter 2009	U	U	U	U		U	U	U	16	10000	8332	10000
Fourth Quarter 2009	U	U J	J U	U		U	U	U	16	10000	8332	10000
o-Nitrophenol						CAS# 88	-75-5					
Second Quarter 2009	-	-	U	U		U	U	U	5		8270C	-
p-Nitrophenol						CAS# 10	0-02-7					
Second Quarter 2009	U	U	U	U		U	U	U	10	20	8270C	20
Fourth Quarter 2009	U	U	U	U		U	U	U	10	20	8270C	20
4-Nitroquinoline-1-c	xide					CAS# 56	-57-5					
Second Quarter 2009	-	-	U	J U	J	U J	U J	U J	5		8270C	-
N-Nitrosodi-n-butyla	amine					CAS# 92	4-16-3					
Second Quarter 2009	-	-	U	U		U	U	U	5		8270C	-
N-Nitrosodiethylam	ine					CAS# 55	-18-5					
Second Quarter 2009	-	-	U	U		U	U	U	5		8270C	-
N-Nitrosodimethyla	mine					CAS# 62	-75-9					
Second Quarter 2009	-	-	U	U		U	U	U	5		8270C	_
N-Nitrosodiphenyla						CAS# 86	-30-6					
Second Quarter 2009	_	_	U	U		U	U	U	5		8270C	
Fourth Quarter 2009	U	U	U	U		U	U	U	5		8270C	-
N-Nitrosodipropylar	mine					CAS# 62	1-64-7					
Second Quarter 2009	_	-	U	U		U	U	U	5		8270C	
N-Nitrosomethyleth						CAS# 10	595-95-6					
Second Quarter 2009	_	_	U	U		U	U	U	5		8270C	_
N-Nitrosomorpholin						CAS# 59						
Second Quarter 2009		_	U	J U	J	U J	U J	U J	5		8270C	
N-Nitrosopiperidine						CAS # 10					02700	
Second Quarter 2009		_	U	U		U	U	U	5		8270C	
N-Nitrosopyrrolidine						CAS# 93					32.30	
Second Quarter 2009		_	U	J U	J	U J	U J	U J	5		8270C	
5-Nitroso-o-toluidin				. 0	J	CAS# 99		. J			32700	
Second Quarter 2009			U	U		U	U	U	5		8270C	
Parathion	-	-	U	U		CAS# 56		U	3		02/UC	
			т т	т,				TT			92700	
Second Quarter 2009	-	-	U	U		U	U	U	5		8270C	-

Table 2: Target Analyte Monitoring Results - Calendar Year 2009
Radford Army Ammunition Plant - Open Burning Ground - Groundwater Monitoring
Upgradient wells = 13MW1 and 13MW2

Second Quarter 2009 - - U U U U U U O O S S2008 -	Analyte/Quarter	13MW1 Q	13MW2 Q	13MW3 Q	13MW4 Q	13MW5 Q	13MW6 Q	13MW7 Q	QL B	ackground Method	GPS
Pentachlorochane	Pentachlorobenzen	е				CAS# 60	8-93-5				
Second Quarter 2009 - - U U U U U U U U	Second Quarter 2009	-	-	U	J U J			U J	5	8270C	-
Pentachloronitrobenzer	Pentachloroethane					CAS # 76	-01-7				
Second Quarter 2009 -			-	U	U			U	0.5	8260B	
Pentachlorophenol											
Second Quarter 2009		-	-	U	U			U	5	8270C	-
Name	-				T.T.			***	10	92700	
Second Quarter 2009 -		-	-	U	U			U	10	8270C	
Second Quarter 2009				TI	II	II	II	II	5	8270C	
CAS # 108-95-2 Second Quarter 2009	Phenanthrene								3	82700	
CAS # 108-95-2 Second Quarter 2009	Second Quarter 2009	_	-	U	U	U	U	U	5	8270C	_
Pointh Quarter 2009	Phenol					CAS# 10	8-95-2				
Phorate CAS# 288-0.2	Second Quarter 2009	U	U	U	U	U	U	U	5	10 8270C	4700
Second Quarter 2009 - - U U U U U U S 8270C -		U	U	U	U			U	5	10 8270C	4700
Second Quarter 2009 - - U U U U U S 8270C -	Phorate					CAS# 29	8-02-2				
Second Quarter 2009 - - U U U U U U U U		-	-	U	U			U	5	8270C	
Second Quarter 2009 - - U U U U U U U U						CAS# 10	9-06-8				
Second Quarter 2009 - - U U U U U U U U		-	-	U	U			U	5	8270C	-
Second Quarter 2009 Company Co											
Second Quarter 2009 - - U U U U U U U S 8270C -		-	-	U	U			U	0.5	8082	
Second Quarter 2009 Color Color				T T	ĪT			II	- 5	9270C	
Second Quarter 2009 - - U U U U U U U U		-	-	U	U			U	J	8270C	
Second Quarter 2009		_	_	U	U	U	U	U	10	8260B	
Fourth Quarter 2009	Pyrene										
Pyridine	Second Quarter 2009	U J	U J	U U	J U J	U J	U J	U J	5	10 8270C	67.1
Second Quarter 2009 -	Fourth Quarter 2009	U	U	U	U			U	5	10 8270C	67.1
Safrole	Pyridine					CAS# 11	0-86-1				
Second Quarter 2009 -		-	-	U	U			U	5	8270C	
Silvex CAS # 93-72-1 Second Quarter 2009 - - U U U U U 2.5 8151A Styrene CAS # 100-42-5 Second Quarter 2009 - - U U U U U U 0.5 8260B - Sulfotep CAS # 3689-24-5 Second Quarter 2009 - - U U U U U 5 8270C - Total TCDF CAS # 55722-27-5 Second Quarter 2009 - - U U U U U U 8280A Total HxCDF CAS # 55684-94-1 Second Quarter 2009 - - U U U U U U 8280A Total TCDD CAS # 41903-57-5	Safrole					CAS# 94	-59-7				
Second Quarter 2009 -		-	-	U	U			U	5	8270C	
Styrene CAS # 100-42-5 Second Quarter 2009 - - U U U U U 0.5 8260B - Sulfotep CAS # 3689-24-5 CAS # 35722-27-5 CAS # 55722-27-5 CAS # 55722-27-5 CAS # 30402-15-4 CAS # 30402-15-4 </td <td></td> <td></td> <td></td> <td></td> <td>•••</td> <td></td> <td></td> <td></td> <td></td> <td>01511</td> <td></td>					•••					01511	
Second Quarter 2009 -		-	-	U	U			U	2.5	8151A	
Selection Quarter 2009 U U U U U U U 5 Second Quarter 2009 U U U U U U U U U U U U U U U U U				T T	ĪT			II	0.5	9260P	
Second Quarter 2009 - - U U U U U U 5 8270C -		-	-	U	U			U	0.3	8200B	
Total TCDF CAS # 55722-27-5 Second Quarter 2009 - - U U U U U U Second Quarter 2009 Second Quarter 2009 - - U U U U U U U U Second Quarter 2009 - - U U U U U U U U U U U U U U U U U U U W 8280A Total TCDD CAS # 41903-57-5	-	_		II	II	II	IJ	II	5	8270C	
Total PeCDF CAS # 30402-15-4 Second Quarter 2009 - - U U U U U U Second U W A	Total TCDF									02700	
Total PeCDF CAS # 30402-15-4 Second Quarter 2009 - - U U U U U U Second U W A	Second Quarter 2009	_	-	U	U	U	U	U		8280A	
Total HxCDF CAS # 55684-94-1 Second Quarter 2009 - - U U U U U U Second U U U U U U U U U U Second U Second U Example 1 Example 2 Example 2 Example 3	Total PeCDF					CAS# 30	402-15-4				
Second Quarter 2009 - - U U U U U U U 8280A Total TCDD CAS # 41903-57-5	Second Quarter 2009	-	-	U	U	U	U	U		8280A	
Total TCDD	Total HxCDF					CAS # 55	684-94-1				
	Second Quarter 2009	-	-	U	U			U		8280A	
Second Quarter 2009 U U U U U U S280A	Total TCDD					CAS# 41	903-57-5				
	Second Quarter 2009	-	-	U	U	U	U	U		8280A	

Table 2: Target Analyte Monitoring Results - Calendar Year 2009
Radford Army Ammunition Plant - Open Burning Ground - Groundwater Monitoring
Upgradient wells = 13MW1 and 13MW2

Analyte/Quarter	13MW1 Q	13MW2 Q	13MW3 Q	13MW4 Q	13MW5 Q	13MW6 Q	13MW7 Q	QL Bo	ickground	Method	GPS
2,3,7,8-TCDD					CAS# 17	46-01-6					
Second Quarter 2009	-	-	U	U	U	U	U		8	3280A	
Total PeCDD					CAS# 36	088-22-9					
Second Quarter 2009	_	-	U	U	U	U	U		8	3280A	
Total HxCDD					CAS# 34	465-46-8					
Second Quarter 2009	_	_	U	U	U	U	U			3280A	
2,4,5-Trichloropheno	oxyacetic a	acid			CAS# 93					,20011	
Second Quarter 2009		-	U	U	U	U	U	2.5	5	8151A	
1,2,4,5-Tetrachlorob	enzene				CAS# 95			2.3)131A	
Second Quarter 2009			U	U	U	U	U	5		3270C	
1,1,1,2-Tetrachloroe	thane		U	U	CAS # 63		U		(3270C	
			T.T.		T T		T.T.	0.5		00COD	
Second Quarter 2009 1,1,2,2-Tetrachloroe	- thana		U	U	U CAS # 79	-34-5	U	0.5		3260B	
			***				***	0.5		2000	
Second Quarter 2009 Tetrachloroethene	-	-	U	U	U CAS# 12	7-18-4	U	0.5	8	3260B	-
Second Quarter 2009	U	U	U	U	U	U	0.1 J	0.5		3260B	5
Fourth Quarter 2009	U	U	U	U	U CAS # 58	-90-2	U	0.5	1 8	3260B	5
2,3,4,6-Tetrachlorop	nenoi				CAS# 30	-30-2					
Second Quarter 2009	-	-	U	U	U	U	U	5	{	3270C	-
Toluene					CAS# 10	8-88-3					
Second Quarter 2009	U	U	U	U	U	U	U	0.5		3260B	1000
Fourth Quarter 2009	U	U	U	U	U	U	U	0.5	5 8	3260B	1000
o-Toluidine					CAS# 95	-53-4					
Second Quarter 2009	-	-	U .	J U J	U J	U J	U J	5	8	3270C	
Toxaphene					CAS# 80	01-35-2					
Second Quarter 2009	-	-	U	U	U	U	U	2.5	8	3081A	-
1,2,4-Trichlorobenze	ene				CAS# 12	0-82-1					
Second Quarter 2009	-	-	U	U	U	U	U	0.5	8	3260B	-
1,1,1-Trichloroethan	е				CAS# 71	-55-6					
Second Quarter 2009	-	-	U	U	U	U	U	0.5	8	3260B	-
1,1,2-Trichloroethan	е				CAS# 79	-00-5					
Second Quarter 2009	_	-	U	U	U	U	U	0.5	8	3260B	
Trichloroethene					CAS# 79	-01-6					
Second Quarter 2009	U	U	1	J 1.5 J	U	U	1.4 J	0.5	1 8	3260B	5
Fourth Quarter 2009	U	U	0.9	1.4	U	U	2.1	0.5		3260B	5
Trichlorofluorometh					CAS# 75						
Second Quarter 2009	_	_	U	U	U	U	U	0.5	5	3260B	_
2,4,5-Trichloropheno					CAS# 95			2.0			
Second Quarter 2009	-	_	U	U	U	U	U	5		3270C	
2,4,6-Trichloropheno		-	U	U	CAS# 88		U	J		,2,0C	
Second Quarter 2009	-		U	U	U	U	U	5		3270C	
1,2,3-Trichloropropa	ne	-	U	U	CAS# 96		U	3		521UC	
			T.	***			T.T.	1		22600	
Second Quarter 2009	- nhorethi-	- nto	U	U	U CAS# 12	U 6-68-1	U	1		3260B	-
O,O,O-Triethyl phos	pilorotnio	ate									
Second Quarter 2009	-	-	U	U	U	U	U	5	8	3270C	-

Table 2: Target Analyte Monitoring Results - Calendar Year 2009
Radford Army Ammunition Plant - Open Burning Ground - Groundwater Monitoring
Upgradient wells = 13MW1 and 13MW2

Analyte/Quarter	13MW1 Q	13MW2 Q	13MW3 Q	13MW4 Q	13MW5 Q	13MW6 Q	13MW7 Q	QL	Backgrou	nd Method	GPS
sym-Trinitrobenzen	е				CAS# 99-	35-4					
Second Quarter 2009	U	U	U	U	U	U	U	2.5	2.5	8330	470
Fourth Quarter 2009	U	U	U	U	U	U	U	2.5	2.5	8330B	470
Vinyl acetate	e CAS# 108-05-4										
Second Quarter 2009	_	-	U	U	U	U	U	0.5		8260B	-
Vinyl chloride					CAS # 75	01-4					
Second Quarter 2009	U	U	U	U	U	U	U	0.5	1	8260B	2
Fourth Quarter 2009	U	U	U	U	U	U	U	0.5	1	8260B	2
Xylenes (Total)					CAS# 133	30-20-7					
Second Quarter 2009	-	-	U	U	U	U	U	0.5		8260B	

Definitions: QL Denotes quantitation limit. U Denotes analyte not detected at or above QL. UA Denotes analyte not detected at or above adjusted sample QL. J Denotes analyte reported at or above QL and associated result is estimated due to quality control reasons. When used with "U" (i.e., "UJ"), denotes analyte not detected at or above QL and QL is estimated due to quality control reasons. When used with "UA" (i.e., "UAJ"), denotes analyte not detected at or above adjusted QL and adjusted QL is estimated due to quality control reasons. R Denotes result rejected. Q Denotes data validation qualifier. NS denotes not sampled.

NA denotes not analyzed.

Note: First Quarter 2006 – Appendix IX monitoring event. For Appendix IX monitoring events, results reported to at or above the detection limit. Results between the detection limit and QL are considered unquantifiable and estimated. See laboratory deliverable for presentation of detection limits.

Second Quarter 2006 - First semiannual sampling event, includes perchlorate confirmation via MS.

Third Quarter 2006 - Additional sampling event - background data collection.

Fourth Quarter 2006 - Sec ond semiannual sampling event.

Second Quarter 2007 - Appendix IX monitoring event. For Appendix IX monitoring events, results reported to at or above the detection limit. Results between the detection limit and QL are considered unquantifiable and estimated. See laboratory deliverable for presentation of detection limits.

Second Quarter 2008 - Appendix IX monitoring event. For Appendix IX monitoring events, results reported to at or above the detection limit. Results between the detection limit and QL are considered unquantifiable and estimated. See laboratory deliverable for presentation of detection limits.

Second Quarter 2009 - Appendix IX monitoring event. For Appendix IX monitoring events, results reported to at or above the detection limit. Results between the detection limit and QL are considered unquantifiable and estimated. See laboratory deliverable for presentation of detection limits.

Hexachlorophene analyzed and reported as a tentatively identified compound (TIC- First Quarter 2006). For Dioxin results (Method 8280A), see laboratory report for sample specific QLs (All results, not detected).

GPS Denotes Groundwater Protection Standard. GPS proposed (not final).

APPENDIX A

FIELD NOTES

4/9/09 RAAP FB#8 B03204-07 DASTIGE	4/13/09 RAAP F8#8 B03204-07 DAS/TRE General Notes
74MW2 DTW-56.32 Begin Parge(1444) Post Purge DTW-56.34 Time Temple Condlus Dongle pt orp(mw) Pargek Dosc (1445) 14,15 267 10,20 7.42 88,0 0.34min Clear (1450) 14,26 271 9.89 7.39 96.5 1 Clear (1455) 14.27 271 9.78 7.38 105.3 1 Clear (1500) 14,24 272 9.71 7.36 110.7 1 Clear (1505) 14.06 273 9.65 7.36 115.8 1 Clear (1510) 13.83 272 9.58 7.36 118.4 1 Clear	Weather - Overcast, 40s PPE - Eye Protection, Natrile gloves, Cotton Suits, Hand Hats Calibrations - YSI 650 MDS PH - 4.00 = 4.00, 7.00 = 7.00, 10.00 = 9.97 Conductivity reads 1414 us in 1413 us std DO 90 = 100 Dedidated tubing and well skirts used at each well All equipment decored between each well Purge water contained and disposed of at dedicated location on site All samples collected, stored and transported on ice in coolers
(1515) 13.79 272 9.55 7.37 120. 1 Clear (1515) Readings Stable (1528) 14.12 Day 272 9.63 7.36 138.8 Post Ruge Reading Sample Time (1520) Samples Collected: (3) 8260, (2) 8011, (1) TM	5TATIC WATER LEVEL TABLE-Unit 13 WELL DTW Post Ruge DTW Notes 13MW1 20.80 20.97 13MW2 21.24 22.48 13MW3 12.93 12.96 13MW4 16.32 16.44 13MW5 16.58 13MW5 16.02 16.18 13MW7 15.20 15.36
An Dimpeled	13mwb DTW-16.02 Post Durge DTW-16.18 Time Temple Condius DOMA 2th ORP (av) Rugh Desc [O715] 12.12 250 5.97 6.88 182.2 0.3 min Clear (0716) 12.00 851 5.57 6.84 184.1 11 Clear (0715) 12.10 853 5.42 6.84 185.0 11 Clear (0720) 12.19 853 5.37 6.89 183.2 11 Clear (0725) 12.30 852 5.15 6.86 182.6 11 Clear

E STATE OF THE STA				Contract of the	They had a limited a fitter	Olivina marketina del la constanta del l	The second secon
4/13/09			RAA				FB#8
			B03204 DAS 17	DE			
13mw6	(Cont.)					. 1	
Time	Temp(2)	· Condlus	DOM5/C	OH	ORP(MU)	Purgek	Desc
	12.41			6.87	181.4		Clear
	12,43			6.85	181.8		Clear
(0735)	Readings	Stable					
(0800)	12.52	851	4.70	6.83	179,6	Post Purge	Reading
	Sample"	Time (o	740)				1
50	imples Coll	ectedi(3)	8260, (2)	8280 (2)	8332, (2)8	330, (2)8	151
	·				Sulfide (2		
			,		/-		
13MW5					F.5. 9		
DTW	-16.45			Begin Pu	ge (081		
Post Purge D		8	In		ge - Clea		
			DO 79/L	pH	ORP(MU)	A :	Desc
(0820)	12.04	662	5,98	6.81	187.5	013 /win	Clear
(0825)	11.80	673	5.76	6.80	188.2	11	Clear
(0830)	11.95	481	5.64	6.80	188.3	1)	Clear
(0835)	12.09	688	5.59	6.80	188,3	1)	Clear
(0840)	12.18	692	5.56	4.82	186.7	li	Clear
(0845)	12.06	698	5.58	6.82	187.3	71	Clear
(0845)	Readings	Stable					
(0947)	511.89	487	6.01	4.87	181.1	Post Purge R	eading
Mislo	Sample	Time (0850)			J	
	amples Co)8280 (4)8332, (6)	330,(6)8	215)
					,(6)8270,(6		
		,		8			
13MW	DuP						
	Sampl	e Time (1050)				٥
	Somples		1 1 .	8260 (2) 8280 (6	3)8332 (a) 8336
4,45)8270 (
				/	1)TM, (1		
				, ,		, , , ,	, lev
*	Daplicate	llow s	sampled	at 13	MW4		
	•		9	3			

4/13/09		RA			F8#8
		B0320 DAS/			
13mw4					
Drw-16.32		4)			
Post Purge DTW-16,	44	1	(1)	Purge-Cle	
Time Temp(2)	Cond (us)	Dough	pH	ORP(uw)	Pungek Desc
(1005) 12,04	418	7.26	6.78	182.8	0.34 min Clear
(1010) 11.74	416	7,10	6.74	186,1	" Clear
(1015) 11.74	416	6.98	6,72	187.0	" clear
(1020) 11.74	414	6.88	6.72	187,2	' Clear
(1025) 11.82	409	6.79	6.71	187.3	Clear
(1030) 11,88	407	6.77	6171	187,7	11 Clear
(1030) Reading	s Stabl	e			
(1108) 12.12	380	7.05	4.66	174.2	Post Purge Reading
Sampl	e Time	(1035))		3
				(2)8332, (2	2)8330,(2)8151
					fide, (2) 8270
				/	

13MW3					
DTW-12.93		Begin	Purge (1	122)	
Post Purge DTW-12.94		Initial	Purge-C	lear	A
Time Temple Condlus	Dowg/L	- pH	ORP(MI	2) Punck	2 Des C
(1125) 12.03 571	7,22	6.81	180.3	0.3 mi	n Clear
(1130) 11,92 578	6.38	6.81	181.4	11	Clear
(1135) 11.96 585	5.96	6.80	122,4	g t	Clear
(1140) 12.03 590	5.73	6.80	182.4	11	Clear
(1145) 11.97 593	5.70	6.80	182.8	1 8	Clear
(1150) 11.99 593	5.65	ie.79	183.3	11	Clear
(1155) 12,10 594	5.62	6.79	183.5	()	Clear
(1155) Readings Stable					
(1216) 12.38 594	5.68	6,79	189.1	Post Purga	Reading
Sample Time	(1200)			, in the second second	J
Samples Collected	:(3)8240	(2) 8280 (3	a) 8332 (a)8330 (a)	8151,(2)8270
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(2)8081	18082, (1)31	14.0,(1)T	M,(1)CN.	(1) Salfide
				(0-1	5-09
		(99)		ZDX	completed

1/14/09 RAAP FB#8		4/14/09	RAAP BOBAO4-09 DASTOE	Fott 8
B03204-07 DA5/TQE			DASTOE	
General Notes	. (8'-	13MW1	Begin Purgel	ha = 0\
Weather-Overcast, Raining	105 11 8 10 11 11 1	DTW - 20.80	\$ 100C	
PPE- Eye Protection, Nitrile gl	ues, Cotton Duits, Hard Harz	Post Purge DTW-20,97	Initial Parge	
Calibrations- VSI 450 MDS		Time Temple) Condlais		
DH-4.00=4.00,7.00=7.0	0,10,00 = 10,01	(0900) 12.08 690	6.36 6.81 1962	0,39min Clear
Conductivity reads 1413 us	in 1413 us std	(0905) 12.07 692	4.89 6.84 194.5	Clear
Do% = 100		(09/0) 12/10 695	3.87 6.85 191.3	Clear
· Dedicated tubing and well skirts us		(0915) 12.11 697	3.59 6.85 189.3	" Clear
· All equipment decored between each	well	(0920) 12.00 697	3.80 6.85 126.1	" Clear
· Purge water contained and disposed of	at deducated location onsite	(0925) 11.93 697	3.67 6.85 185.2	Clear
· All samples collected, stored and trans	ported in coolers on ice.	(0930) 11.90 696	3.61 6.85 183.7	" Clear
		(0930) Readings Stable		-Pos
13mw2		(0953) 12,30 678	3.92 6.81 180.3	Post Purge Reading
DTW - 21.24 Begin	Purge (0734)	Sample Time	(0935)	
Post Purge DTW - 22.48 Initial	Purge - Clear	Samples Collecte	d:(3)8260,(2)8332,(2)83.	30, (1) 3140, (1) TM
Time Temple and as DOBL pl	t ORP(MV) Punkek Desc		(2)8270	
(0735) 12.40 975 8.24 6.9	5 189.1 0.3 min Clear			
(0740) 12.43 826 6.40 6.9	0 187.6 " Clear	13MWT		
(0745) 12.50 779 5.94 4.89	187.3 11 Clear	DTW-15.20	Begin Purge	
(0750) 12.46 744 5.46 6.8	8 185.4 " Clear	Post Purge DTW-15,36	Initial Purge	e-Clear
(0755) 12.48 718 5.15 6.8	7 184.8 11 Clear	Time Temple Condle	us) DOM9/2 ptt ORP(M	w/ Pamel Desc
(0800) 12.44 705 4.90 6.8	7 185.6 " Clear	(1015) 11.55 703	5.02 6.95 183.	2 0.3 min Clear
(0805) 12,34 685 4,62 6,8	11	(1020) 11.63 697	4,20 6,95 180.	1 " Clear
(0810) 12.31 680 4,54 6,8	6 184.4 " Clear	(1025) 11.69 696	4.08 6.95 177	1.7 " Clear
(0810) Readings Stable		(1030) 11.77 695	4.05 6.95 176	3 11 Clear
(0831) Se12,76 656 4.17 6.8	4 182.6 Post Purge Reading	(1035) 11.72 696	4.03 6.95 174	1.7 " clear
Sample Time (0815)		(1040) 11.72 698	3.99 6.95 172	2.8 " Clear
Samples Collected: (3)8260, (2)8333	(2)8330 (1)314.0 (1)TM	(1045) 11.68 697	3.95 6.94 172	.2 " Clear
(a)8276		(1045) Readings Ste		
		(1112)11.88 698		9 Post Parge Reading
		Sample Ti		
		Samples Call	ected: (3)8260, (2)8280, (2)8332, (2)8330, (2)8151
		(3)8081/	8082, (1)314.0 (1)TM, (1)	in (1) 5 attide (2) 8270
(02)			103	

6/17/09 RAAP B03204-07 DAS/TOE	F8# 8	6/17/09 RAAP BO3204-07 DAS/70E
Gierral Notes DASITOE		13MW3 (13MW3) DAS/7GE
Weather-Overcast, Showers, loos		DTul-11.68 Begin Purge (1023)
PPE-Eye Protection, Nitrile gloves, cotton s	saits	Yost Yurgo DTW-11168 Inchal Purge-Clear
Calibrations - YSI 650 MDS		Time Temple Cordins DOTIC Att ORP(MU) Kingeklapus Desc.
pt- 4.00 = 4.00 , 7.00 = 7.00 , 10.00 = 9.98	8	(1025) 15:99 529 7.54 6.75 175.7 0.39 min Clear
Conductivity reads 1413 us in 1413 us ste	4.	(1030) 15,77 514 6.63 6.67 177.1
Do 70 = 100	à il	(1035) 15.13 501 6.40 6.65 171.0
· Dedicated tubing and well skirts used at each	hwell	(1070) 15,66 496 6,d0 6,65 116,5
· All equipment decored between each well		(1045) 15.66 492 6.16 6.63 175.4 (1)
· Purge water disposed of at dedicated location or	1814e	(1050) 15.67 488 6.14 6.63 174.8 " " " (1055) 15.79 485 6.13 6.64 173.6 " " " "
· All samples Collected, stored + transported on ice	IN coolers	(1055) Readings Stable
13MW6		Sample Time (1100)
DTW - 14,17 Begin Purge (0749)		Samples Collected: (3) 8260, (3) 8260
Post Purge DTW-14,19 Initial Purge-Clear	_	
Time Temple Cordlus DOGL pH ORP(mu) Pargeklapin	1) Bol (gal)	. 13mw5
(0750) 14,73 850 5,58 4,56 200,4 0,34 min	Clear	DTW-14.45 Bagin Purge (0842)
(0755) 14.80 903 4,24 6.72 190.6	1)	Post Purge DTW-14.51 Initial Parge Clear
(0800) 14,77 900 3,90 6.68 185,2)1	Time Temple Condlus DOTL pH ORPINU Pungeklapu) DesC
(0805) 14.72 893 3,71 6.69 181,3	1)	(0845) 14.76 707 6.74 6.77 176.6 0.37min Clear
(0810)14:13 886 3:66 6:10 171.0	11	(0850) 1561 (81 6.57 6.75 177.1 " "
(0815)14,14 881 3,60 6,11 17012	1)	(6855) 15.00 674 6.49 6.75 176.6 " " " (0900) 15.02 669 6.43 6.75 176.7 " " " " " " " " " " " " " " " " " " "
(0820)14.65 873 3.54 6.71 173.4	·	(0905) 15.02 664 6.38 6.74 176.4
(0820) Readings Stable		(0910) 15.01 661 6.34 6.74 176.5 11 11
Sample Time (0825)		
Samples Collected: (1) sulfide		(0910) Readings Stable
		Sample Time (0915)
All Notes copied from DAS per:	sona	Samples Collected: (1) Sulfide
Field Book #1,		
(120)		(137)
(IXV)		

2 L	The same that the same of	2	TOTAL SERVICE	the Tractic Court of the Life	7 10 1
6/17/09	RA	AP			FB#8
07.775	B0320	100			P
100	UNU	14 C			20
13MW4		2 - 5	0 /	22)	
DTW - 13.94	5	Begin 1	Purge (09)	3/)	
Post Parge DTW - 13,		nitial	Ruge-Ch	ear	
1001 large vice 135	1/) Damg/.		pormi) D.		Desc
Time Temple Cos	des 100 72				
(0940) 14.91 4	46 6.87	6.68 1	175,5	37min	Clear
(0945) 14,83 4	49 6.14 1	6,60 l	177.6	e i	1
(0950) 14.65 4			177.0	1 /	11
				lı	11
(0955) 14,57 4			176.6	11	1)
(1000) 14,44 4	53 5,81 6	e.60 1	176,8		21
(1005) 14,42 4.		0.60	176,3	17	
			•		
(1005) Reading	Stable	/1-1	-)		
	Sample Time	5 (101	0)		
Sam	olos Collecter	1: (1)50	ulfide		
		-			
13MW7		~ ·	0 ((*
DTW-13.8			Purge (11		
Post Purge DTW-13	3.81	Initial	Parge-1	Clear	
T (8)	andlus Domy/L	ott	MARPIMU)	Purgeklap	W Desc
				0.34min	- 1
(1120) 14,40	700 2.59	70	159.9	11	. CVECT
(1125) 14,15	696 1.22	6.76	161,2		n
(1130) 13,90	676 1.08	6.78	156.0	11	
		6.82	150,7	l1	Ŋ
				11	11
(1140) 13.68	619 1.14	6.82		11	11.
(1145) 13.69	603 1,29	6.82	149,4		11
(1150)13.70	597 1,27	6.82	149,3	1)	VI
(1180)01	ac Clable				
(1150) Read 11	195 STOLVIE	1	2>		
	Sample Ti	me (11	וככו		29
Sam	ples Collecte	d:(1) &	Sultide		110
	2.5			217 8	· Tool
				001	0
				M	No.
	A			(100	
	(128)			

10/5/09	BAAP	EAHR
	B03204-07 DAS/TOE	r B#8
General Notes	2.37.46	
11/2-11 00 7	0 11 01 1 701	

Weather-Partly Cloudy, 70's
PPE-Eye Postection, Nitrile gloves
Calibrations - YSI 450 MDS PH- 4.00 = 4.00 ,7.00 = 7.00 ,10.00 = 10.00 Conductivity reads 1413 us in 1413 us std Do 70 = 100

· Dodicated tubing and well skirts used at each well

· All equipment deconed between each well
· Purge water disposed of at dedicated location onsite
· All samples collected, stored and transported on ice in Coolers.

	Static 1	Water L	evel Table Per	mit 433
WELL	ID	DTW	Post Purge DTW	Notes
741MW1		23.07	23.24	
74mw2		56.34	56.36	Je
74 MW3		20,47	22.23	
74MW4		23.53	23.55	
74MW5		25.64	25.65	
74 MW6		24.54	2456	
74MW7		24.68	25.09	

DTW - 20,4	17		Be	gin Purge	(1113)		
Post Purge DTW-22123 Initial Purge-Chear							
Time Temp(c)	Cond(45)	Dorole		ORP(MU)		Desc	
(1115) 13.55	644	3.22	6.84	-1.3	0,3 /min	Clear	
(1120) 13.90		1.72	4.81	0.4	g 3	Clear	
(1125) 14,38 (237	1.57	4,83		il	Clear	
		1,52	6.84	9.8	11	Clear	
A .		1.54	6.85	17.9	30	Clear	
	040 1	1.65	6.82	26.9	1.4	Clear	
(1145)14,51 6	44 1	.78	4.89		14	Clear	
			(29				

10119109 RAAP FB#8	10/19/09 RAAP FB#8
10/19/09 RAAP BO3204-07 DAS/7GE	B03204-07 DAS 170E
General Notes	13MW 3 (cont)
11 11 - 2 5 - 11 57 5	Sample Time (0740)
PPE-Eye Protection, Nitrile gloves, Lotton suits, HARD HATS Calibrations - YSI 650 MDS	5 amples Collected (3) 2240, (1) 3140, (2/8270, (1) TM, (3) 8332-8336
Calibrations - YSI 650 MDS	12-0-5
0H-400=4.00,7.00=1.00,10.00=1.10	13445
Conductivity reads 1413 us in 1413 us std	DTW-17.07 Begin Parge (0814)
Do % = 100	Post Parge DTW-17.14 Initial Punge-Clear Time Temple Condias DOMS/L pH ORPHAND Runge Desc DTW
· Dedicated tubing and well skirts used at each well	
a All equipment doccoped between each well	(0815) 13.46 613 5.34 6.93 212, 5 0.3 min Clear 17.10 (0820) 13.56 634 4,12 6.98 206.8 11 Clear 17.10
· Parge water disposed of at dedicated location ensite	(0825)13.61 640 4.04 6.91 204,7 11 Clear 17.09
· All samples collected, stored and transported in coolers on ice	(0830)13.69 637 4.29 6.88 204,2 " Clear 17.09
Static Water Level Table - Unit 13	(0835)13.70 628 4.44 6.85 203.6 " Clear 17.09
2 1 Oil No Mates	(0840)13.63 625 4.51 6.84 201.4 " Clear 17.10
13MWI 21.57 21.73	(0845)13.53 620 4.60 6.84 201.8 " Clear
22.78	(0845) Readings Stable
13MW2 31.12 3.41	(0930)13.78 605 4.71 6.84 194.4 Post Runge Reading
13MW4 16.83 P16.90	Sample Time (0850)
13MW5 17.07 17.14	Samples Collected: (9)8260, (3)314.0, (4)8270, (3) TM, (9)8332/8330
13MW6 16.73 16.80	
13MW 7 16.23 16.34	13mwle
	Drw - 16.73 Begin Purge (09 5 3)
13MW3	Post Purge DTW-16.80 Initial Purge-Clear
DTW - 13,39 Begin Purge (0'10')	Time Temple Condlus Dong/L pH ORP(Mu) Purget Desc DTW
Post Purge DTW-13:41 Initial Purge-Clear	(0955) 13,21 742 3.54 6.92 188,5 0.3 hin Clear 16.80 (1000) 13,12 752 3.01 6.92 185,4 1 Clear 16.80
Time Temp(e) Condlus DO 1/2 ptt ORP(MU) Punger Desc DIW	(1005) 13.12 752 3.01 6.92 185.4 " Clear 16.80 (1005) 13.24 769 2.66 6.92 182.0 " Clear 16.80
(0710) 14.08 536 6.79 6.61 d las 0.5 million Clear	(1010) 13.33 775 2.62 6.92 180.6 " Clear 16.79
(013) 13,100 336 3,86 6.00 A10.0	(1015)13.19 777 2.53 692 179.4 " Clear 16.79
(0/20/15.6) 304 5,50 0.00 0.00 13 4/	(1020) 13.22 TTT 2.47 6.92 178.6 " Clear 16.79
(D/25) 13/34 36/ 3/35 6/00 0/3/10 11 0/2016 12/11	(1025) 13,17 777 2.43 6.92 177.4 " Clear 16.79
(0750) 13.er See Sign And I M Olave	(1025) Readings 5 table
(0735) 13,75 563 5,23 6,83 234, 1 Clear (0735) Readings Stable 4,79 228,6 Post Purgo Reading	
(0750) 14.11 548 5.25 (144)	(145)

10/19/09 RAAP FB#	8 10/19/09 RAAP FB#8 B03204-07 DAS/TRE
DASTIGE	
13MW6 (Cont)	7W12B DTW-24.84 Begin Purge (1227)
Sample Time (1030)	Post Purge DIW-24.86 Initial Purge-
Samples Collected: (3)8260, (2)8270, (1) TM, (1)314.0, (3)8332/8330	Time Tempé Condas Dogl pt ORRAN Pargek Dosc DTW
	(1228) 14,26 616 8,21 T108 168,4 0.37 min Clear 24,26
13 mw7 DTW - 16,23 Bigin Purge (1052)	(1230) 14.31 616 7.96 7.06 168.9 " Clear
0 10 Nul - 1/234 Tutal Runge - Clear	(1235) 14,27 616 7,76 7,03 167.8 " Clear
Time Temple (contins) DOTE AH ORPHW) Pargek Desc Drw	
(1055) 14.14 532 4.84 6.90 182.5 0.39min Clear 16.33	
(1100) 14.19 601 2.72 6.84 174.9 " Clear 16.33	
(1105) 14.28 648 1.50 6.83 169.1 " Clear 16.33	
(1110) 14,47 667 1,25 683 163,7 Clear 16,33	
(1115) 14.61 015 11.61	Sample Time (1300)
(1120)14,83 673 1,14 6,81 160,5 " Clear (1135)14,94 671 1,17 6,79 159,3 " Clear	Samples Collected. (2) 8270, (1) TM, (1) EN
(1125) Readings Stable	
(1140) 14,62 668 1.23 6.77 157. H Poot Purge Reading	7W9C
S (130)	DTW-14,52 Begin Parge (1334)
Samples Collected: (3) 8260, (2) 8270, (1) TM, (1) 314.0, (3) 8332/83.	Jost Parge DTW-16,77 Initial Purge-Clear Time Temps (Condue) Dong/L PH ORPCHI) Purge Nosc DTW
	Time remple constat to the state of the stat
Static Water Level Table - Unit 7	(1335) 13.41 1073 2.61 6.85 60.7 0.37min Clear 15.61 (1340) 13.38 1077 2.05 4.78 71.8 " Clear 15.72
WELL DTW Post Purge DTW Notes	(1345) 13.70 1085 1.58 6.77 83,7 " Clear 15.81
INTER STATE OF THE	(1350)13.80 1091 1.50 6.77 90.0 " Clear 15.90 V
7W9C 14.52 16.77 7W10B 15.57 16.00	(1355) 14.03 1096 1.36 6.76 93.2 " Clear (6.02
	(1400)14,29 1098 1.27 6.76 91.6 Clear 16.07
7W13 19,28 21.05	(1405)14,42 1102 1.24 6.75 90.1 " Clear 16.14
7mW6 26.41 31.55	(1405) Readings Stable
7WIIB 25.15 25.18	(1423)14.63 1102 1.30 6.69 90.5 Post Purge Reading
7WCA 24.71 25,63	Sample Time (1410) Samples Collected: (2)8270, (1)TM, (1)CN
7W9B 10/20109 29.68 SWL ONLY	Samples Collected: (aroaro, (1)1101, (1)01
7WII 24.42	
7MW5 24.95	(47)
(146)	

10/19/09 RAAP	FB#8	10/20/09	RAAP	F8#8
10/19/09 RAAP BO3204-07 DASTRE		1	303204-07 DAS/TQE	
7W108		General Notes		
DTW-15.57 Begin Purge +1438	3)	Weather-	Sunny, 60's	3.4
Post Purge DTW-16.00 Initial Purge - Clear		PPE-Eye	Profection, Nitrile gloves, Co	tten suits
Time Temple Cond(us) DOMS/L pH ORP(MO) Pa		Calibrat	ions - YSI 650 MDS	
	34min Clear 16,18	pH-4.0	00 = 4.00 ,7.00 = 7.00 , 10.	00 = 10,00
(1445) 13,44 828 2.84 6.75 128.0	11 Clear 15.98	Conduct	wity reads 1413 us in 14	13 us Std
(1450) 13.31 815 2.40 6.74 128,3	Clear 13.98	Do% =	100	
(1455) 13.37 213 2,22 6,76 126.5	C1641 15, 15	1 Dedicated tubir	ng and well skirts used at each	h well
(1500) 13, 29 811 2.09 6.77 125.9	C1001 1 10101 V	· All equipment	deconed between each we	
(1505) 13.44 808 1.96 6.77 125.0	15.87		disposed of at dedicake /oca	
(1510)13,57 806 1,95 6,77 124.6	" Clear 15.85	HII Samples coll	lected, stored and transported on	ice in coolers
(1510) Readings Stable	0 10 0 1'	12 12/		
(1528) 13.78 797 1.88 6.80 125.8	Post Purge Keading	13mw4	B.: 0 . (m-	727
Sample Time (1515)	3	Post Purge DTW-16	Bogin Purge 6-	62 1)
Samples Collected: (2) 8270, (1) TM, (1) CN		Tost large Dia 16	ondas Dougk pH DRP(M) F	2 de Dace Dal
Time				34 min Clear 16.88
7WIOC DTW-21.59 Begin Purge (15	(1)	7	525 2.94 7.03 200.6	11 Clear
Post Purge DTW -22.86 Initial Purge - C	1000		545 2.36 7.10 194.8	11 Clear 14.88
Post Purge DTW - 22.86 Initial Purge - C Time Temple Condlus Dong/L pH ORPLAND	Punck Desc DTW		64 2.20 7.14 188.2	11 Clear
	0.34 min Clear 21.85		69 2,19 7.14 183.9	11 Clear 16,88
(1541) 13.25 719 2.35 7.16 -52.0 (1545) 13.22 719 1.60 7.07 -27.1	11 Clear 22.03 V		71 2.10 7,13 178.3	11 Clear
(1550) 13.19 720 1.17 7.05 -4.8	11 Clear 22.19		70 2.07 7.12 176.5	11 Clear
(1555) 13.11 721 1.04 7.05 5.7	11 Clear 22.26	(0800) Readings	Stable	
(1600) 13.00 721 0.90 7,04 24.8	11 Clear 22.53	(0839)14,10 56	30 3.15 6.71 170.6	Post Purge Roading
(1610) 12.89 720 0.84 7.04 23.2	11 Clear 22.61		Time (0805)	
(1615) 12.83 720 0.80 7.04 26.0	" Clear 22.70	Samples Colle	cled: (3)8240, (2)8270, (1) mm, (1)3	14.0 (3) 8333/8330
(1615) Readings Stable				
(1634)12.58 717 0.79 7.06 32.3	Post Purge Reading	13WD4P		
Sample Time (1620)	0		e Time (0820)	
Samples Collected: (3)8270, (1) TM,	(1) eN		(ed: (3)8260, (a)8270, (1) TM, (1)314.	0,(3)8332/8530
		* Dup sample	s collected at 13mw4	
148			(149)	

10/20/09 RAAP FB+	+8 10/20/09 RAAP PB#8
B03204-07 DAS/TRE	B03204-07 DAS/TQE
13Mu12.	7W13
DTW - 21.76 Begin Purge (0853)	DTW-19.28 Begin Punge (1123)
Post Purge DTW-2288 Initial Purge-Clear	Post Purge DTW-21.05 Initial Purge-Clear
Time Temple) Condlaws) DOM/L PH ORP(MW) Purget Desc DTW	Time Temple Condlus Dough pH ORPIMU Pangek Desc. DTW
(0855) 12.98 663 5.67 6.85 170.3 0.37min Clear 22.10	
(0900) 13.01 667 4.30 6.85 165.8 " Clear 22.3.	
(0905) 13,01 669 3,50 6,86 161,5 " Clear 22,3	
(0910)12.87 671 3.29 6.86 159.8 " Clear 22.5	
(0915) 12.63 672 3.16 6.86 157.2 " Clear 22.5	
(0920) 12.49 671 3.13 6.86 1567 " Clear 22.6	
(0925) 12.25 672 3/12 6.86 155.3 " Clear 22.6	
(0925) Readings Stable	(1155) Readings Stable (1213) 14.64 1393 1.83 7.2 -19.7 Post Parge Reading
(0946)12.31 665 3.22 6.85 151.5 Post Purge Reading	
Sample Time (0930)	Sample Time (1200)
Samples Collected: (3) 8260, (2) 8270, (1) TM, (1) 314.0, (3) 8332/8330	Samples Gliecled: (2)8270, (1) TM, (1) CN
124431	7mw6_
13MW1 DTW-21.58 Begin Purge (0959)	DTW-26.41 Begin Parge (+231)
Post Purge DTW-21.73 Begin Purge (0959) Thi Fial Purge - Clear	Post Purge DTW -31.55 Initial Purge-Clear
Time Temp(E) Condlas) DOM9/2 pH DRP/MU) Pargell Dosc D74	Time Temple Condlus Dom/2 pH ORP(m) Purget Desc Drw
(1000) 12.56 593 6.90 682 157.9 0.37min Clear 21.70	
(1005) 12.56 645 5.41 6.80 152.2 11 Clear 21.70	
(1010) 12,74 667 4,67 6,80 147.0 " Clear 21.66	
(1015) 12,79 690 4,34 6.81 143.1 " Clear 21.66	
(1020) 12,90 706 4,20 6,81 139,8 " Clear	(1255)15,34 1716 0.94 7,07 -64,8 " Clear 30,10
(1025) 13,06 714 4,09 6.81 137,2 " Clear 21.64	
(1030) 13.18 719 3.99 6.81 135.6 " Clear	(1305)15.76 1688 0.95 7.10 -64.2 " Clear 30.77
(1035)13.27 722, 3.90 6.81 132.6 "Clear	(1305) Readings Stable
(2035) Reading Stable	(1324)15.43 1656 0.98 7.07 -61.7 Post Purge Reading
(1057) 13,51 725 3.64 6.83 131,2 Post Purge Reading	Sample Time (1310)
Sample Time (1040)	Samples Collected: (2)8270, (1) TM, (1) CN
Samples Colleded: (3)8260, (2)8270, (1)TM, (1)314.0, (3)8332/8330	
150	

RAAP	FB#9
12/9/99 803204-2030	
NB-2 OBG Soil Samples	
	90 (1) 2330/2332.
Samples Cellected: (3) 8240/5035. (1) 8270/TM, (1) 82 (1) Dry Weight	(7) 65 (7)
(1) by weigh	
5B-1	
Samples Callected: (3) 8260/5035, (1) 8270/TM, (1) 829	10 (1) 8330/8332
Samples Callected (3) 8260/5033, (1) Exity (1)	
5B-2	
Sample Time: (1240) Samples Callected: (3) 8260/5035, (1) 8270/7m, (1) 8	290,(1) \$330/8332,
Samples Collected (1) Dry Weight	
Berm-1	
Sample Time: (1145) Samples Collected: (3) 8260/ 5035, (1)8270/TM, (1)82	290 (1)8330/8332,
(1) Dry Weight	
Pand-) Sample Time: (1155)	1
Samples Collected: (3)8240/5035, (1)8218/11/1, (1)	2290,(1) 8330/8332,
(1) Day Weight	
Example Block	
Equipment Blank Sample Time: (1345)	<u> </u>
Sample's Collected: (a) TM - RCRA Metals 6010/74	76
End of Soil Samples	

12/4/09 RAAP	FB#9
12/4/09 BO3204-07 OBG resample event	
Canaral Notes	
* Weather: Windy /Sunny - 50's	
* APE: Eye Protection, Nitrile Glovas, Flame retordent suits	
* Cal. brations: YSI 650 MDS	
- pH: 4,00= 4.00, 7.00 = 7.00, 80.00 = 9.97	
- conductivity 1,413 ms = 1,413 ms	
* Dedicated tubing and well skirts used at each well	
* All equipment decored between each well. * Perge water disposed at wastewater treatment plant	4
	lersand
on ice.	
* River's water level is very high and standing water is surrounding	13MW3
13MW6_	
DTW-12,35 Begin Purge (1450)	/
Post Purge DTW-12.50 Initial Purge-Clear	N-T
Time Temp (c) Cond(us) Dong/L pH ORP(un) Parge 14 Desc	
(459) 14,13 882 3,15 6.92 92.9 0,34min Clean	
(1500) 14,13 882 3,15 6,92 91.3 11 11	12.50
(190.5) 1111 to 882 5:15 6:17 65.74	12.50
(1510) 14.17 882 3.17 6.95 87.4 " " " (1515) 14.17 881 3.20 6.95 86.4 " "	12.51
(15dc) 14.18 880 3.21 6.96 8.519 11 11	12,51
(1520) Readings stable	791.3
(1535) 14.12 877 3.23 6.96 85.6 11 11	12.50
Sample Time: (1525)	
Samples Collected: (2) sulfides	

12/15/09 RAAP FB#9 RAAP B63204-07 0B6 RESONN 4FC/TOG 12/16/09 B03204-07 OBG resample event * Weather Overcast, 40% steel tool wark boots General Notes * PPE: Eye Protection Mitrile aloves white Hame istendal suit. * Weather: Windy / Sunny - 30's * Calibrations: YST 650 MDS * PPE: Eye Protection, Nitrile Gloves, Flame retardent suits p1+: 4.00 = 4.00 7.00 = 6.99 10.00 = 9.97 * Calibrations: YSI 650 MDS Conductivity reads 1412ms in a 1413ms standard - pt: 4,00 = 4,00, 7,00 = 7,00, 10,00 = 10,00 10070 = 10076 - Conductivity: 1413 pt 5 standard = 14 tubine and well skirts usodat each well - DO % = 100 % * All somple equipment decened after each well * Dedicated tubing and well skirts used at each well. & Progenater collected and disposed of at nastenets. * All well equipment decored after each well. treatment plant * Purge water disposed at wastewater treatment plant stored and transported * All samples stored and transported on ice. Additional Calibration Myran L Ultrameter

PH: 400 - 4.00 7.00= 7.00, 10.00 = 10.00

Conductivity reads 1413 ps in a 1413 ps standard * River level is very high. 13 MW7 13MW3 Begin Purge: (08:45) DTW = 8.69' Bain Purge (0906) DTW= 10,50 Initial Purge: Clear Post Purge OTW= Initial Purge clear Cond(pus) DOMA pH ORP(mV) Purge K Desc TP = 20,40 Time Temp(e) 9.90 x 0.65 6.413 4.90 7.03 207.0 0.34 min Clear 8,91' (08:50) 14.01 850 pulled pump to develop well 8 90' 6.94 30.8 (08:55) 13.94 TEMP(E) DH Cond(ns) 8, 281 Votes Bail#1 Vol(gal) 4.90 204.6 (09:00) 13,99 5,55 0915 8.88 16.0 389.1 +756.5 cloudy 1986 6.87 (09:05) 14,09 0920 617 8.80 358.0 13.0 cloudy 6.86 195.0 4,32 (69:10) 13.94 6926 15.9 357.2 8.84' 6.01 19.5 SI cloudy 6.85 190,7 4.26 (09:15) 13.85 0931 8. 881 6.07 78 3225 187.1 6.84 495 4,20 (09120) 14.04 (0932 poured approx 1,0 gallon of purg water back in to well to (09:20) Readings Stable 8.71 Pince the sick of the casing 186.8 6.83 (09:40) 13.90 Sample Trac (0925) pit (ind/Ms) BAIL # Time Souphe Collected: (2) Sulfides 32.5 0938 15.6 SI Cloude 6,03 330,9 0943 15,7 39.0 5.96 328.2 194 * Could not complete sampling event due to burn operations powed approx 1.0 gallon of purge water back in to well near effected area. Will return next weeks yett siten 1000 0950_) 15.7 6.03 313. 117 45.5 SI Cloudy 6.07 315.2 130 52.0 Stclardy

Station	RAAP 7	PB#9	12/15/09	2 A A A 303204-07 036 REJUMPLE XFC/100	FB#9
12/15/09	BOBZONLO TO BOBG RESAMPLE			VFC/TEC	
	KFC/TOLE		13MW 9		
13MW3 (Contrd)			Dato Nov = 12.58	BeginPurgel	
	DH Cond(ns) BAN(#) Vol(gen) Notes	(Time) Temp@) Cording	DOGRAD SHORPMAN RUR	LEK DOC. D'TH
TIME TEMPCO		1) 1/6/12	(1100) 14.43 680	The state of the s	3 7min clear 12.68
() replace	Pump and purge	pro-	(1105) 14,48 653	4.99 6.70 154.2 "	h
5-1			(1110) 14,38 640	5-38 6.66 1544 "	11 12.67
7 3			(11/5) 14.13 638	5.88 6.65 154.3 "	g 5
()			(120) 14.03 635	5.71 6.65 153.0 "	12.62
			(1130) 14.00 634	5.80 6.65 152.0 1° 5.70 6.65 151.6 °	14 17 (1)
			(1130) Reading		1, 15.68
		1	(1143) 14.25 631		Proge Reality
13MW3			Sample Timel		
DTW = 10.	22 Bogin Privatel				
PostPurge OTW-10.	61 Initral Phryes	SIcloudy	17 10 11		
	nd(ns) DO(ng/L) of HORP(ny/v) Phyge K		13MW4	8 2 0	
1		in Clear 10.55	DTW-12.26 Post Purge DTW=12.33	Beginfun	= Clear
	15 6.06 6.79 766.9	10,58	TIME Temp () Condys)		Desc DTh
7	5 5,98 6.75 164.1 "	ι,	(0805) 12'80 1027	7.92 6.88 Z19.4 60.3 L/mi	
7	51 5,97 6,75 163,4 "	10.59	(0810) 13.95 775	5.01 6.89 209.1	a H
(1035) 14.66 49		10.60	(0815) 13.55- 683 (0820) 13.59 653	4.05 6.92 1986	64
(1036) Readings 5		0 .	Cedale \	8367 695 1933 "	" 1,2,29
(1046) 14.77 48	54 6.10 6.75 162.0 Post Pu	y Reading	(0830) 13.60 G25 (0830) 13.60 G15	3,39 6.98 187.5 1	, da
	Sample Tim (1040) Samples Collected: (2) Sulfide		(0883) 1350 609	3 10 6 99 1824	12,31
	Damples Collected (& 15h171ac		(0835) Readings Stable	ETE STOS	
				3.79 6.83 184.5 Post P	arye Reading
		4	Sampl	2 1 inc (0840)	7
			Samples (DMPLETED
			13MW DUP Samp	ous Collected (2) SUISING	109 850
	(10)		Same	Thes Collectical is something	
			A STATE OF THE PARTY OF THE PAR		100

2/展

APPENDIX B

2009 LABORATORY ANALYTICAL RESULTS AND DATA VALIDATION REPORTS (CD-ROM)

APPENDIX C

CONSTITUENT BACKGROUND VALUES FOR THE COMPLIANCE GROUNDWATER MONITORING PROGRAM (CD-ROM)

Data Validation Summary
Second Quarter 2009 Groundwater Monitoring Event
Appendix IX Groundwater Monitoring Event
Open Burning Ground-Hazardous Waste Management Unit 13 (HWMU 13)
Radford Facility Army Ammunition Plant, Radford, Virginia
EPA ID# VA1210020730

Draper Aden Associates performed a comprehensive manual review of the analytical results for the Second Quarter 2009 semiannual Appendix IX groundwater monitoring event at the Open Burning Ground (HWMU 13) located at the Radford Facility Army Ammunition Plant (RFAAP) in Radford, Virginia. The following information and attached table summarize the data validation results.

Sample Collection/Analytical Services

Draper Aden Associates, of Blacksburg, Virginia, collected groundwater samples during April 13 and 14, 2009.

Draper Aden Associates sent the samples via courier to CompuChem, a Division of Liberty Analytical, of Cary, North Carolina, Lancaster Laboratories, of Lancaster, Pennsylvania, TestAmerica North Canton, North Canton, Ohio and TestAmerica Sacramento, Sacramento, California. The chain of custody and permit required target analytes for each laboratory is provided as an attachment.

The laboratory analyzed the sulfide samples one day outside of the 7-day holding time requirement. Alliant Techsystems Inc. resampled the point of compliance wells for sulfide on June 17, 2009; however, the data for the June 17, 2009 samples were suspect due to laboratory errors. As a result, the VDEQ instructed Alliant to resample the point of compliance wells for sulfide during the upcoming Fourth Quarter 2009 semiannual monitoring event. The results are provided under separate cover.

Receipt of Monitoring Event Data

On behalf of Alliant Techsystems Inc., each laboratory submitted results to Draper Aden Associates in a final certificate of analysis which included analytical results as well as relevant documentation to verify and validate the results. Some revisions to the certificate of analysis for the event were received on June 4, 2009 and all final results were received on August 11, 2009.

Verification Events

Trichlorofluoromethane (0.3 J μ g/l) and 1,1,1-trichloroethane (0.1 J μ g/l) were detected less than the QL in 13MW3 by SW-846 Method 8260B. A verification sampling event was conducted on June 17, 2009 to refute or confirm the reported detection. 1,1,1-Trichloroethane in sample

Pulse Find Birth, debestions on kindidate Obdition Ref. Valuações de 1911. OBG (EM. 2020) SUMINAPS. S. E.

13MW3 was not detected by Lancaster Laboratories, Lancaster, PA (SDG RAD19 received on July 17, 2009). Trichlorofluoromethane and 1,1,1-trichloroethane in sample 13MW3 were not confirmed by TestAmerica, North Canton, Ohio (Lot # A9F180214 received on July 8, 2009). The verification result for 1,1,1-trichloroethane in sample 13MW3 (Lancaster) was reported as the final result. The verification result for trichlorofluoromethane in sample 13MW3 (TestAmerica) was reported as the final result.

Additionally Detected Appendix IX Target Analytes

None.

Data Validation/Data Presentation

Draper Aden Associates performed a comprehensive review of the analytical results as presented on the attached data validation reports and summary table. For the Appendix IX monitoring event, sample results were reported by the laboratory and validated to at or above the method detection limit. A reported value for a target analyte detected between the MDL and the quantitation limit (QL) should be considered an estimated concentration.

Detection limits and quantitation limits are presented on the Data Validation Report Summary Table.

Sample/blind field duplicate results (13MW4 and 13MWDUP) are presented on the Data Validation Report Summary Table.

No results were rejected based on the data validation criteria except for sulfide noted above.

The data validation results are summarized on the attached reports and table. A summary of the required methods of analysis is provided below.

Summary of Required Analyses

		Sui	mmary oj	requireu 2	Trutyses			
Analytical Method/ Well ID	13MW1	13MW2	13MW3	13MW4	13MWDUP (13MW4 Duplicate)	13MW5	13MW6	13MW7
Permit Required 8260B Volatiles	X	X	X	X	X	X	X	X
Permit Required 8270C Semivolatiles	X	X	X	X	X	X	X	X
Permit Required 6010B Inorganics	Х	X	X	X	X	X	X	X
Permit Required 7470 Mercury	X	X	X	X	X	X	X	X
Permit Required 314.0 Perchlorate	X	X	X	X	Χ	X	X	X
Permit Required 8330 Explosives	X	X	X	X	X	X	X	X
Permit Required 8332 Nitroglycerin	X	X	X	X	X	X	X	X
Full Appendix IX Analytes			X	X	X	X	X	X

Note:

- 13MW1 and 13MW2 background monitoring wells.
- X Denotes analysis required.
- Permit Required denotes Compliance Monitoring List as presented in the Class 3 Permit Module currently under VDEQ review.

LIMITATIONS:

Draper Aden Associates prepared this document (which may include drawings, specifications, reports, studies and attachments) in accordance with the agreement between Draper Aden Associates and the client.

The standard of care for all professional engineering, environmental and surveying and related services performed or furnished by Draper Aden Associates under this Agreement are the care and skill ordinarily used by members of these professions practicing under similar circumstances at the same time and in the same locality. Draper Aden Associates makes no warranties, express or implied, under this Agreement in connection with Draper Aden Associates' services.

Conclusions presented are based upon a review of available information, the results of our field studies, and/or professional judgment. To the best of our knowledge, information provided by others is true and accurate, unless otherwise noted.

Draper Aden Associates' liability, hereunder, shall be limited to amounts due Draper Aden Associates for services actually rendered, or reimbursable expenses actually incurred.

Any reuse or modification of any of the aforementioned documents (whether hard copies or electronic transmittals) prepared by Draper Aden Associates without written verification or adaptation by Draper Aden Associates will be at the sole risk of the individual or entity utilizing said documents and such use is without the authorization of Draper Aden Associates. Draper Aden Associates shall have no legal liability resulting from any and all claims, damages, losses, and expenses, including attorney's fees arising out of the unauthorized reuse or modification of these documents. Client shall indemnify Draper Aden Associates from any claims arising out of unauthorized use or modification of the documents whether hard copy or electronic.

Draper Aden Associates
Engineering & Surveying & Environmental Services

This Report has been prepared by:

Janet C. Frazier

Senior Environmental Scientist

2206 South Main Street

Blacksburg, Virginia 24060

540-552-0444,

Jfrazier@daa.com

www.daa.com

2.2.10

Date:

This Report has been subjected to technical and quality review by:

Srikanth Nathella, P.E.,

Project Engineer

2206 South Main Street

Blacksburg, Virginia 24060

540-552-0444

snathella@daa.com

www.daa.com

Date:

2-2-10

		:	:	7	ē	
Analyte	Sample ID	Kesult (ug/L) Q	Result (ug/L) Q	(ug/L)	UL (ng/L)	Validation Notes
Method: 6020						
Laboratory: CompuCl	CompuChem, a Division of Liberty Analytical,	n of Liberty A	Analytical, Cary, NC	NC		
Tin	13MWDUP	2.1 U	ı u	10	2.1	Target analyte not detected at or above the detection limit. MS/MSD recovered low (58%), Field duplicate for 13MW4.
Zinc	13MW4	3.1 B	3.1 J	5	2.7	Result < QL.
	13MW6	2.8 B	2.8 J	5	2.7	Result $<$ QL .
	13MW7	8.9	8.9	5	2.7	No action taken.
	13MWDUP	2.8 B	2.8 J	5	2.7	Result < QL. Field duplicate for 13MW4.
Method: 8260B						
Laboratory: Lancaster Laboratories, Lancaster, PA	r Laboratories	s, Lancaster, I	P4			
Acrolein	13MW3	5 U	U J	25	5	Target analyte not detected at or above the detection limit. QL estimated due to sample pH<2.
	13MW4	s U	l U	25	5	Target analyte not detected at or above the detection limit. QL estimated due to sample pH<2.
	13MW5	5 U	U J	25	5	Target analyte not detected at or above the detection limit. QL estimated due to sample pH<2.
	13MW6	s U	U J	25	5	Target analyte not detected at or above the detection limit. QL estimated due to sample pH<2.
	13MW7	5 U	U J	25	5	Target analyte not detected at or above the detection limit. QL estimated due to sample pH<2.
	13MWDUP	5 U	U J	25	5	Target analyte not detected at or above the detection limit. QL estimated due to sample pH<2.
Carbon tetrachloride	13MW3	9.9	6.6 J	0.5	0.1	MS/MSD recovered high (148%).
	13MW5	0.1 J	0.1 J	0.5	0.1	Result < QL. MS/MSD recovered high (148%).
Chloroform	13MW3	9.0	0.6 J	0.5	0.1	MS/MSD recovered high (142%).
trans-1,4-Dichloro-2-butene	13MW3	1 U	u J	5	_	Target analyte not detected at or above the detection limit. Percent drift requirement of +/- 25% exceeded (28%D).
	13MW4	1 U	l U	Ŋ		Target analyte not detected at or above the detection limit. Percent drift requirement of +/- 25% exceeded (28%D).
	13MW5	1 U	U J	5	_	Target analyte not detected at or above the detection limit. Percent drift requirement of +/- 25% exceeded (28%D).
	13MW6	1 U	U J	5	_	Target analyte not detected at or above the detection limit. Percent drift requirement of +/- 25% exceeded (28%D).
	13MW7	1 U	U J	S	****	Target analyte not detected at or above the detection limit. Percent drift requirement of +/- 25% exceeded (28%D).
	13MWDUP	1 U	U J	S		Target analyte not detected at or above the detection limit. Percent drift requirement of +/- 25% exceeded (28%D).
Tetrachloroethene	13MW7	0.1 J	0.1 J	0.5	0.1	Result < QL. MS/MSD recovered high (136%).
Trichloroethene	13MW3	1	1 J	0.5	0.1	MS/MSD recovered high (143%).
	13MW4	1.5	1.5 J	0.5	0.1	MS/MSD recovered high (143%). Blind field duplicate 13MWDUP result is 1.5 ug/l. RPD between results is <1.
	13MW7	1.4	1.4	0.5	0.1	MS/MSD recovered high (143%).
	13MWDUP	1.5	1.5 J	0.5	0.1	MS/MSD recovered high (143%). Blind field duplicate for 13MW4. RPD between results is <1.

Monitoring Event: Second Quarter 2009 Comprehensive Data Validation Report

Draper Aden Associates

Biginering + Surveying + Environmental Services

Radford Facility Army Ammunition Plant: HWMU-13

=	ō	4100	-				
uerommentenana					***************************************	***************************************	9600009
	1		1	THE PROPERTY OF THE PROPERTY OF THE PARTY OF	A 2.5 A 2.5 A	 THE TANK THE TANK TO THE TANK TO THE TANK THE TA	1

Analyte not detected above the detection limit. Continuing calibration %D > +/-25%. Analyte not detected above the detection limit. Initial calibration RSD > 15%, Analyte not detected above the detection limit. Initial calibration RSD > 15%, Analyte not detected above the detection limit. Initial calibration RSD > 15%. Analyte not detected above the detection limit. Initial calibration RSD > 15%. Analyte not detected above the detection limit. Initial calibration RSD > 15%, Analyte not detected above the detection limit. Initial calibration RSD > 15%, Analyte not detected above the detection limit. Initial calibration RSD > 15%, Analyte not detected above the detection limit. Initial calibration RSD > 15%, Analyte not detected above the detection limit. Initial calibration RSD > 15%, Analyte not detected above the detection limit. Initial calibration RSD > 15%. Analyte not detected above the detection limit. Initial calibration RSD > 15%, Analyte not detected above the detection limit. Initial calibration RSD > 15%, Analyte not detected above the detection limit. Initial calibration RSD > 15%, Analyte not detected above the detection limit. Initial calibration RSD > 15%, Analyte not detected above the detection limit. Initial calibration RSD > 15%. Analyte not detected above the detection limit. Initial calibration RSD > 15%. Analyte not detected above the detection limit. Initial calibration RSD > 15%, Initial calibration RSD > 15%. Initial calibration RSD > 15%. Analyte not detected above the detection limit. Initial calibration RSD > 15% Analyte not detected above the detection limit. Initial calibration RSD > 15% Analyte not detected above the detection limit. Initial calibration RSD > 15% Analyte not detected above the detection limit. Initial calibration RSD > 15% Analyte not detected above the detection limit. Initial calibration RSD > 15% Analyte not detected above the detection limit. Initial calibration RSD > 15% Analyte not detected above the detection limit. Imitial calibration RSD > 15% Analyte not detected above the detection limit. Initial calibration RSD > 15% Analyte not detected above the detection limit. Imitial calibration RSD > 15% Analyte not detected above the detection limit. Initial calibration RSD > 15% Analyte not detected above the detection limit. Initial calibration RSD > 15% Analyte not detected above the detection limit. Initial calibration RSD > 15% Analyte not detected above the detection limit. Initial calibration RSD > 15% Analyte not detected above the detection limit. Analyte not detected above the detection limit. Validation Notes (ng/L) (ng/L) Laboratory: CompuChem, a Division of Liberty Analytical, Cary, NC Ø (ng/L) Ø (ng/L) Sample ID 13MWDUP I3MWDUP I3MWDUP 13MWDUP 13MWDUP 13MW1 13MW6 13MW7 13MW6 13MW7 13MW4 13MW3 13MW4 13MW5 13MW3 13MW7 13MW2 13MW4 13MW5 13MW3 13MW4 13MW5 13MW6 13MW7 13MW3 3MW4 13MW3 13MW5 13MW6 3MW6 13MW7 3MW5 bis(2-Chloroethyl) ether Method: 8270C Benzo | k | fluoranthene Acenaphthylene Chlorobenzilate p-Chloroaniline Acenaphthene Analyte

		Result	Result	¥	d d	DL	
Analyte	Sample ID	(ng/L)	(ng/L)	L) Q	(ng/L)	(ng/L)	Validation Notes
Method: 8270C							
Laboratory: CompuCh	CompuChem, a Division of Liberty Analytical, C	n of Libe	rty Analytica	I, Cary, NC	ΛĊ		
Chlorobenzilate	13MW4	5.3 U	<u>;</u> D		5	1.1	Analyte not detected above the detection limit. Continuing calibration $\%D > +/-25\%$.
	13MW5	s U	D	ſ	5	1	Analyte not detected above the detection limit. Continuing calibration $\%D > \pm /-25\%$.
	13MW6	5.1 U	Ω	ſ	5	-	Analyte not detected above the detection limit. Continuing calibration $\%D > +/-25\%$.
	13MW7	s U	D	ŗ	5		Analyte not detected above the detection limit. Continuing calibration $\%D > +/-25\%$.
	13MWDUP	5.1 U	D	ſ	5		Analyte not detected above the detection limit. Continuing calibration $\%D > +/-25\%$.
2-Chloronaphthalene	13MW3	5 U	Ω	ſ	5	proset.	Analyte not detected above the detection limit. Initial calibration RSD $> 15\%$.
	13MW4	5.3 U	Ω	,	5	1.1	Analyte not detected above the detection limit. Initial calibration RSD $> 15\%$.
	13MW5	s U	Ω	ſ	5	-	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW6	5.1 U	D	ŗ	5		Analyte not detected above the detection limit. Initial calibration RSD $> 15\%$.
	13MW7	s U	D	ſ	5		Analyte not detected above the detection limit. Initial calibration RSD $> 15\%$.
	13MWDUP	5.1 U	D	ſ	5		Analyte not detected above the detection limit. Initial calibration RSD $> 15\%$.
4-Chlorophenyl phenyl ether	13MW3	5 U	D	ſ	5		Analyte not detected above the detection limit. Initial calibration RSD $> 15\%$.
	13MW4	5.3 U	D	_	5	According to	Analyte not detected above the detection limit. Initial calibration RSD $> 15\%$.
	13MW5	5 U	D	ſ	5	-	Analyte not detected above the detection limit. Initial calibration RSD $> 15\%$.
	13MW6	5.1 U	D	ſ	5		Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW7	s U	D	ſ	\$	proset.	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MWDUP	5.1 U	D	ſ	2	_	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
Chrysene	13MW3	s U	D	,	5	1.3	Analyte not detected above the detection limit. Initial calibration RSD $> 15\%$.
	13MW4	5.3 U	D	ſ	5	1.4	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW5	5 U	Ω	ſ	S	1.3	Analyte not detected above the detection limit. Initial calibration RSD $> 15\%$.
	13MW6	5.1 U	Ω	J	5	1.3	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW7	s U	n	ſ	5	1.3	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MWDUP	5.1 U	n	J	5	1.3	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
p-Phenylenediamine	13MW3	50 U	n	 ,	90	50	Analyte not detected above the detection limit. Initial calibration RSD $> 15\%$. Continuing calibration $\%D > +/-25\%$.
	13MW4	53 U	Ω	-	50	53	Analyte not detected above the detection limit. Initial calibration RSD $> 15\%$. Continuing calibration %D $> +/-25\%$.
	13MW5	50 U	n	1 0	50	50	Analyte not detected above the detection limit. Initial calibration RSD > 15%. Continuing calibration $\%D > +/-25\%$.
	13MW6	S1 U	n	ſ	50	51	Analyte not detected above the detection limit. Initial calibration RSD $> 15\%$. Continuing calibration %D $> +/-25\%$.
	13MW7	50 U	D	ſ	50	50	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$. Continuing calibration $\%D > +/-25\%$.
	13MWDUP	51 U	D	ſ	50	51	Analyte not detected above the detection limit. Initial calibration RSD $> 15\%$. Continuing calibration $\%D > +/-25\%$.
Diallate	13MW3	s U	D	ſ	2		Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW4	5.3 U	D	ſ	ν.	1.1	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW5	s U	D	'n	S		Analyte not detected above the detection limit. Initial calibration RSD $> 15\%$.
	13MW6	5.1 U	D	ī	5	_	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.

		Result	Re	sult	궣	Ы		
Analyte	Sample ID (ug/L)	(ng/L) G	<u>੩</u>	g/L) Q	(ng/L) Q (ng/L) (ng/L)	(ng/L)	Validation Notes	
Method: 8270C	20 <i>1</i>							
Laboratory	I aharatary: CommiChom a Division of Liberty Analytical Cary, NC	on of Libert	. Analyti	cal Cam	NC			

Analyte	Sample ID	(ng/L) u	(ng/L) Q	(ng/L)	(ng/L)	Validation Notes
Method: 8270C						
Laboratory: CompuChem, a Division of Liberty Analytical, C	ouChem, a Divisio	n of Liberty	Analytical, Cary	ary, NC		
Diallate	13MW7	2 O S	r n	5	-	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MWDUP	5.1 U	r n	5	_	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
Dibenzofuran	13MW1	s U	r D	5		Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW2	s U	l U	5	-	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW3	5 U	l U	5	_	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW4	5.3 U	f n	5	1.1	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW5	s U	l U	5		Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW6	5.1 U	U J	5	_	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW7	5 U	l U	S	1	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MWDUP	5.1 U	U J	S	1	Analyte not detected above the detection limit. Initial calibration RSD $> 15\%$.
Dimethoate	13MW3	5 U	r n	5	_	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW4	5.3 U	f n	S	1.1	Analyte not detected above the detection limit. Initial calibration RSD $> 15\%$.
	13MW5	s U	r n	S	-	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW6	5.1 U	l U	5	_	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW7	5 U	r n	5	_	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MWDUP	5.1 U	l U	5	_	Analyte not detected above the detection limit. Initial calibration RSD $> 15\%$.
3,3'-Dimethylbenzidine	13MW1	5 U	U J	5	4	Analyte not detected above the detection limit. Continuing calibration $\%D > +/-25\%$.
	13MW2	5 U	U J	\$	4	Analyte not detected above the detection limit. Continuing calibration $\%D > +/-25\%$.
	13MW3	5 U	U J	\$	4	Analyte not detected above the detection limit. Continuing calibration $\%D > +/-25\%$.
	13MW4	5.3 U	U J	2	4.2	Analyte not detected above the detection limit. Continuing calibration $\%D > +/-25\%$.
	13MW5	5 U	U J	2	4	Analyte not detected above the detection limit. Continuing calibration $\%D > +/-25\%$.
	13MW6	5.1 U	U J	5	4.1	Analyte not detected above the detection limit. Continuing calibration $\%D > + /-25\%$.
	13MW7	s U	U J	S	4	Analyte not detected above the detection limit. Continuing calibration $\%D > +/-25\%$.
	13MWDUP	5.1 U	U J	S	4.1	Analyte not detected above the detection limit. Continuing calibration $\%D > +/-25\%$.
4,6-Dinitro-o-cresol	13MW3	10 U	U J	10	-	Analyte not detected above the detection limit. Initial calibration RSD $> 15\%$. Continuing calibration $\%D > +/-25\%$.
	13MW4	10 U	U J	10	1.1	Analyte not detected above the detection limit. Initial calibration RSD $> 15\%$. Continuing calibration %D $> +/-25\%$.
	13MW5	10 U	U J	10	_	Analyte not detected above the detection limit. Initial calibration RSD $> 15\%$. Continuing calibration %D $> +/-25\%$.
	13MW6	10 U	U J	10		Analyte not detected above the detection limit. Initial calibration RSD $> 15\%$. Continuing calibration $\%D > +/-25\%$.
	13MW7	10 U	U J	10	1	Analyte not detected above the detection limit. Initial calibration RSD $> 15\%$. Continuing calibration %D $> +/-25\%$.
	13MWDUP	10 U	U J	10	1	Analyte not detected above the detection limit. Initial calibration RSD $> 15\%$. Continuing calibration $\%D > +/-25\%$.
2,4-Dinitrophenol	13MW3	10 U	l U	01	1.1	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$. Continuing calibration $\%D > +/-25\%$.
	13MW4	10 U	r n	10	Ξ	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$. Continuing calibration $\%D > +/-25\%$.
	13MW5	10 U	U J	10	1.1	Analyte not detected above the detection limit. Initial calibration RSD > 15%. Continuing calibration %D > +/-25%.

Analyta	Cl olumeS	Result	Result	QL (IId/)	DL (110/1)	Validation Notes
Allaiyte	Calliple ID		(ag/r)	(a 8) L	(18h)	
Method: 8270C						
Laboratory: CompuChem, a Division of Liberty Analytical,	hem, a Divisio	on of Liberty	_	Cary, NC		
2,4-Dinitrophenol	13MW6	10 U	U J	10	1.1	Analyte not detected above the detection limit. Initial calibration RSD > 15%. Continuing calibration %D > +/-25%.
	13MW7	10 U	l U	10	1.1	Analyte not detected above the detection limit. Initial calibration RSD > 15%. Continuing calibration %D > +/-25%.
	13MWDUP	10 U	U J	10	1.1	Analyte not detected above the detection limit. Initial calibration RSD > 15%. Continuing calibration %D > +/-25%.
Famphur	13MW3	5 U	U J	5	5	Analyte not detected above the detection limit. MS recovered low.
	13MW4	5.3 U	U J	2	5.3	Analyte not detected above the detection limit. MS recovered low.
	13MW5	5 U	U J	5	5	Analyte not detected above the detection limit. MS recovered low.
	13MW6	5.1 U	U J	5	5.1	Analyte not detected above the detection limit. MS recovered low.
	13MW7	s U	U J	5	5	Analyte not detected above the detection limit. MS recovered low.
	13MWDUP	5.1 U	l U	5	5.1	Analyte not detected above the detection limit. MS recovered low.
Fluorene	13MW3	5 U	U J	S	-	Analyte not detected above the detection limit. Initial calibration RSD > 15%.
	13MW4	5.3 U	U J	5	, , ,	Analyte not detected above the detection limit. Initial calibration RSD > 15%.
	13MW5	5 U	U J	5	prost.	Analyte not detected above the detection limit. Initial calibration RSD > 15%.
	13MW6	5.1 U	ניים	5	_	Analyte not detected above the detection limit. Initial calibration RSD > 15%.
	13MW7	5 U	ı D	5		Analyte not detected above the detection limit. Initial calibration RSD > 15%.
	13MWDUP	5.1 U	U J	5	-	Analyte not detected above the detection limit. Initial calibration RSD > 15%.
Hexachlorophene	13MW3	200 U	U J	200	141	Target analyte not detected by TIC.
	13MW4	200 U	ר ה	200	141	Target analyte not detected by TIC.
	13MW5	200 U	U J	200	141	Target analyte not detected by TIC.
	13MW6	> 009	U J	200	141	Target analyte not detected by TIC.
	13MW7	200 U	U J	500	141	Target analyte not detected by TIC.
	13MWDUP	200 U	C J	500	141	Target analyte not detected by TIC.
Hexachloropropene	13MW3	5 U	ı u	S	_	Analyte not detected above the detection limit. LCS recovered low.
	13MW4	5.3 U	l U	5	1.1	Analyte not detected above the detection limit. LCS recovered low.
	13MW5	5 U	U J	S	-	Analyte not detected above the detection limit. LCS recovered low.
	13MW6	5.1 U	ı u	5	_	Analyte not detected above the detection limit. LCS recovered low.
	13MW7	5 U	ı u	5	-	Analyte not detected above the detection limit. LCS recovered low.
	13MWDUP	5.1 U	r n	5	-	Analyte not detected above the detection limit. LCS recovered low.
Kepone	13MW3	5 U	l U	5	5	Analyte not detected above the detection limit. MS recovered low.
	13MW4	5.3 U	U J	5	5.3	Analyte not detected above the detection limit. MS recovered low.
	13MW5	s U	r n	5	S	Analyte not detected above the detection limit. MS recovered low.

Analyte not detected above the detection limit. MS recovered low. Analyte not detected above the detection limit. MS recovered low. Analyte not detected above the detection limit. MS recovered low.

5.1

םםם

13MWDUP

כככ

5.1

13MW6 13MW7

		Result		Result	정	ЪГ	
Analyte	Sample ID	(ng/L)	ø	(ng/L) Q	(ng/L)	(ng/L)	Validation Notes
Method: 8270C							
Laboratory: CompuC	CompuChem, a Division of Liberty Analytical,	n of Lib	erty Anal	ytical, Car	Cary, NC		
Methapyrilene	13MW3	s U		U J	5	S	Analyte not detected above the detection limit. Continuing calibration $\%D > +/-25\%$.
	13MW4	5.3 U		u J	5	5.3	Analyte not detected above the detection limit. Continuing calibration $\%D > +/-25\%$.
	13MW5	s U		U J	5	5	Analyte not detected above the detection limit. Continuing calibration $\%D > +/-25\%$.
	13MW6	5.1 U		U J	5	5.1	Analyte not detected above the detection limit. Continuing calibration $\%D>\pm/-25\%$.
	13MW7	5 U		U J	5	5	Analyte not detected above the detection limit. Continuing calibration $\%D > +/-25\%$.
	13MWDUP	5.1 U		U J	5	5.1	Analyte not detected above the detection limit. Continuing calibration %D > +/-25%.
Methyl parathion	13MW3	5 U		U J	5		Analyte not detected above the detection limit. Initial calibration RSD $> 15\%$.
	13MW4	5.3 U		u J	5	=	Analyte not detected above the detection limit. Initial calibration RSD $> 15\%$.
	13MW5	5 U		U J	5	-	Analyte not detected above the detection limit. Initial calibration RSD $> 15\%$.
	13MW6	5.1 U		U J	5	-	Analyte not detected above the detection limit. Initial calibration RSD $> 15\%$.
	13MW7	s U		l U	5	1	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MWDUP	5.1 U	_	U J	5	-	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
2-Naphthylamine	13MW3	5 U		u J	5	П	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$. Continuing calibration $\%D > +/-25\%$.
	13MW4	5.3 U		U J	5	1.1	Analyte not detected above the detection limit. Initial calibration RSD $> 15\%$. Continuing calibration $\%D > +/-25\%$.
	13MW5	5 U	_	U J	5	_	Analyte not detected above the detection limit. Initial calibration RSD > 15%. Continuing calibration %D > +/-25%.
	13MW6	5.1 U		U J	5	1	Analyte not detected above the detection limit. Initial calibration RSD > 15%. Continuing calibration %D > +/-25%.
	13MW7	5 U	ho.	l U	5	1	Analyte not detected above the detection limit. Initial calibration RSD > 15%. Continuing calibration %D > +/-25%.
	13MWDUP	5.1 U		f n	5	_	Analyte not detected above the detection limit. Initial calibration RSD > 15%. Continuing calibration %D > +/-25%.
4-Nitroquinoline-1-oxide	13MW3	s U		U J	5	_	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW4	5.3 U		U J	5	1.1	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW5	5 U		U J	5	1	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW6	5.1 U		U J	5	_	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW7	5 U		U J	5	_	Analyte not detected above the detection limit. Initial calibration RSD $> 15\%$.
	13MWDUP	5.1 U	-	U J	5	_	Analyte not detected above the detection limit. Initial calibration RSD $> 15\%$.
N-Nitrosomorpholine	13MW3	5 U	hou.	U J	5	_	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW4	5.3 U		u J	5	1.1	Analyte not detected above the detection limit. Initial calibration RSD $> 15\%$.
	13MW5	s U		U J	5	_	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW6	5.1 U		U J	5	_	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW7	5 U	· ·	U J	5	_	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MWDUP	5.1 U	hous	u J	5	1	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
N-Nitrosopyrrolidine	13MW3	5 U	live.	U J	5	-	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW4	5.3 U		n n	5	1.1	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW5	s U		U J	5	1	Analyte not detected above the detection limit. Initial calibration RSD > 15%.

Monitoring Event: Second Quarter 2009 Comprehensive Data Validation Report

Draper Aden Associates

Bajnening + Baneving + Britannaul Services

Radford Facility Army Ammunition Plant: HWMU-13

		Result		Result	Q	Dr	
Analyte	Sample ID	(ug/L) Q		(ug/L) Q (ug/L) (ug/L)	(ng/L)	(ng/L)	Validation Notes
Method: 8270C							
			•		,		

Analyte not detected above the detection limit. Initial calibration RSD > 15%, Analyte not detected above the detection limit. Initial calibration RSD > 15%. Analyte not detected above the detection limit. Initial calibration RSD > 15%. Analyte not detected above the detection limit. Initial calibration RSD > 15%, Analyte not detected above the detection limit. Initial calibration RSD > 15%. Analyte not detected above the detection limit. Initial calibration RSD > 15%. Analyte not detected above the detection limit. Initial calibration RSD > 15%, Analyte not detected above the detection limit. Initial calibration RSD > 15% Analyte not detected above the detection limit. Initial calibration RSD > 15%. Analyte not detected above the detection limit. Initial calibration RSD > 15%. Analyte not detected above the detection limit. Initial calibration RSD > 15%. Analyte not detected above the detection limit. Initial calibration RSD > 15%. Analyte not detected above the detection limit. Initial calibration RSD > 15% Analyte not detected above the detection limit. Initial calibration RSD > 15%. Analyte not detected above the detection limit. Initial calibration RSD > 15%. Analyte not detected above the detection limit. Initial calibration RSD > 15%. Analyte not detected above the detection limit. Initial calibration RSD > 15%, Analyte not detected above the detection limit. Initial calibration RSD > 15%. Analyte not detected above the detection limit. Initial calibration RSD > 15%. Analyte not detected above the detection limit. Initial calibration RSD > 15%. Analyte not detected above the detection limit. Initial calibration RSD > 15%. Analyte not detected above the detection limit. Initial calibration RSD > 15%, Analyte not detected above the detection limit. Initial calibration RSD > 15%. 4. 4. 1.5 4. 1.5 4. 1.5 Laboratory: CompuChem, a Division of Liberty Analytical, Cary, NC 3MWDUP 13MWDUP 13MWDUP 13MWDUP 13MW3 13MW4 13MW5 13MW2 13MW4 13MW5 13MW3 13MW5 13MW7 13MW7 13MW3 13MW6 13MW7 13MW1 13MW6 13MW7 13MW4 13MW6 N-Nitrosopyrrolidine Pentachlorobenzene o-Toluidine Pyrene

Laboratory:	aboratory: CompuChem, a Division o	em, a Division of Liberty Analytical, Cary, NC	alytical, Cary,	NC		of Liberty Analytical, Cary, NC
Perchlorate	13MW4	127.3	127.3	4	0.887	No action taken. Field duplicate result was 123.6 ug/1 (RPD = 2.9).
	13MW6	1.334 J	1.33 J	4	0.887	Result < QL.
	13MWDUP 123.6	123.6	123.6	4	0.887	No action taken. Field duplicate for 13MW4.

Method: E314.0

Monitoring Event: Second Quarter 2009 Comprehensive Data Validation Report

Draper Aden Associates
Egirenig • Surveying • Environmall Services

Validation Notes (ng/L) 占 (ng/L) Ø (ng/L) Result Ø (ng/L) Result Sample ID Analyte

UA Denotes analyte not detected at or above adjusted sample QL. J Denotes analyte reported at or above QL and associated result is estimated due to quality control reasons. When used with a "U" (i.e., "UJ"), denotes analyte not detected at or above QL and QL is estimated due to quality control reasons. When used with "UA" (i.e., "UAJ"), Definitions: QL Denotes quantitation limit. DL Denotes detection limit. Q Denotes data qualifier. U Denotes analyte not detected at or above QL

denotes analyte not detected at or above adjusted QL and adjusted QL is estimated due to quality control reasons. R Denotes result rejected.

B or J denotes result between detection limit and QL. Estimated result. B and J are laboratory result data qualifiers.

Appendix IX Monitoring Events:

For Appendix IX Monitoring Events, results are reported to the detection limit.

Appendix IX Monitoring Events: First Quarter 2006 (First Appendix IX Monitoring Event for unit). Second Quarter 2007. Second Quarter 2008. Second Quarter 2009.

Data Validation Summary
Fourth Quarter 2009 Semiannual Groundwater Monitoring Event

Open Burning Ground (OBG) - HWMU 13 Radford Facility Army Ammunition Plant, Radford, Virginia EPA ID# VA1210020730

Draper Aden Associates performed data validation of the analytical results for the Fourth Quarter 2009 semiannual groundwater monitoring event at the Open Burning Ground (OBG) located at the Radford Facility Army Ammunition Plant (RFAAP) in Radford, Virginia. The following information and attached table summarize the data validation results.

Sample Collection/Analytical Services

Draper Aden Associates of Blacksburg, Virginia collected the groundwater samples during October 19-20, 2009.

Samples were submitted for laboratory analysis via courier to CompuChem, a Division of Liberty Analytical, of Cary, North Carolina and Lancaster Laboratories, Lancaster, Pennsylvania.

The chain of custody and permit required target analytes submitted to each laboratory is provided as an attachment.

Receipt of Monitoring Event Data

On behalf of Alliant Techsystems Inc., each laboratory submitted results to Draper Aden Associates in a final certificate of analysis which included analytical results as well as relevant documentation to verify and validate the results. The final certificate of analysis for the event was received on December 31, 2009.

Verification Events

No verification sampling was required.

Data Presentation

Sample results provided by the laboratory were reported and presented on the attached data validation summary table to at or above the method detection limit (MDL). Validated sample results are reported to at or above the quantitation limit (QL).

A reported value for a target analyte detected between the MDL and the QL should be considered an estimated concentration. Target analytes reported by the laboratory as detected less than the corresponding QLs are validated and qualified as "U" to note the analyte was analyzed for, but not detected above the QL.

No results were rejected based on the data validation criteria.

A summary of the data validation is provided below.

Data Validation Summary

The samples were analyzed by SW-846 Method requirements (Test Methods for Evaluating Solid Wastes - Physical and Chemical Methods, USEPA SW-846, 3rd edition - Final Update 1, II/IIA and III) and USEPA Methods for the "Determination of Organic and Inorganic Compounds in Drinking Water, Volume 1, EPA 815-R-00-014. All data, except where noted below, were evaluated in general accordance with:

- USEPA Region III Modifications to the Laboratory Data Validation Functional Guidelines for Evaluating Inorganic Analyses, April 1993.
- USEPA Region III Modifications to National Functional Guidelines for Organic Data Review, September 1994.
- USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, June 2008.
- USEPA Region III Innovative Approaches for Validation of Organic and Inorganic Data Standard Operating Procedures M-1, June 1995, modified, and the analytical method.

The evaluation of the data was based on the following:

- Data package completeness
- Chain of custody
- Holding time/preservation
- Initial and continuing calibrations
- Blanks
- Interference check sample (inorganics)
- Surrogates
- Matrix spike/matrix spike duplicate (MS/MSD) samples
- Laboratory control samples (LCS)
- Internal standards
- Field duplicate
- Serial dilution (inorganics)
- Target analyte identification and quantitation
- Other criteria as noted below

Data validation results are summarized on the attached reports and table. A summary of the required methods of analysis and the laboratory that performed the analysis is provided below.

Summary of Required Analytical Methods and Laboratory

	Laboratory/				Monitori	ng Well			
Analytical Method	SDG	13MW1	13MW2	13MW3	13MW4	13MWDUP (13MW4)	13MW5	13MW6	13MW7
8260B Volatiles	Lancaster Laboratories, Inc./ RAD23	Х	X	X	Х	Х	Х	X	Χ
8270C Semivolatiles	CompuChem/ 0910165	X	X	Х	Х	Х	Х	Х	Х
6020 Inorganics (*)	CompuChem/ 0910165	X	X	X	Х	Х	Х	Х	Х
7470A Mercury	CompuChem/ 0910165	X	Х	Х	Χ	Χ	Х	Х	Χ
8330A Explosives	CompuChem/ 0910165	Χ	Х	Χ	Х	X	Х	Х	Χ
8332 Nitroglycerin	CompuChem/ 0910165	Χ	Х	Χ	Х	Х	Х	х	Х
314.0 Perchlorate	CompuChem/ 0910165	Х	Х	Х	Х	X	Х	Х	Х

Note: 13MW1 and 13MW2 background monitoring wells. Remaining monitoring locations are compliance wells. (*) For 4Q2009, the laboratory analyzed inorganics by 6020 ICP-MS, instead of 6010B-ICP.

Each final certificate of analysis was complete in its presentation and the data were of acceptable quality.

The chain of custody documentation was complete. The chain of custody was appropriately signed and dated by field and laboratory personnel.

Each laboratory received the samples on ice and in good condition, with custody seals intact. Applicable holding time and preservation criteria were met for all samples and methods, except where noted below. The data set demonstrated the laboratory's ability to achieve the reported permit QL, except where discussed below.

SW-846 Method 8260B/5030B-25 ml purge volume Volatile Organic Analytes

The instrument performance check, instrument calibration, blank, surrogate, MS/MSD, LCS, internal standards, sample/field sample duplicate results, and target analyte identification and quantitation were met, except where noted below. The laboratory analyzed a passing method detection limit check sample. Although not required, the laboratory also analyzed a passing initial calibration verification standard. The MS/MSD analysis was performed on project sample 13MW5. MS/MSD criteria were met except where noted below. A trip blank was analyzed for each day of sample collection. Sample 13MW4 was selected as the blind field duplicate (13MWDUP). Trichloroethene was detected at 1.4 µg/l in 13MW4 and in 13MWDUP. Sample/Field Sample Duplicate RPD criteria were met. Sample results were reviewed for transcription errors from the instrument data to the laboratory report and no errors were noted.

Deviations from specific QA/QC criteria that were identified during the data review process are summarized below.

- Toluene was reported in the trip blanks and influenced final sample results. For toluene, detected results were attributed to blank contamination and qualified as "U" to reflect the analyte was analyzed for, but not detected above the QL.
- MS/MSD recovered within laboratory control limits, with the exception of MS which
 recovered outside the project specified control limits for carbon tetrachloride. The MS for
 carbon tetrachloride recovered slightly high and detected results above the QL for carbon
 tetrachloride were qualified as "J" to note the result is estimated. This applied to 13MW3
 only.
- The laboratory provided the analyst initial demonstration of capability data for analyst A. Sneeringer.
- Hexachloroethane was reported by Method 8260B and 8270C.
- The laboratory revised the Method 8260B certificate of analysis to include hexachloroethane.
- Performance evaluation samples were not evaluated with the sampling event.

SW-846 Method 8270C/3510C - Semivolatile Organic Analytes

The instrument performance check, instrument calibration, blank, surrogate, MS/MSD, LCS, internal standards, sample/field sample duplicate results, and target analyte identification and quantitation were met, except where noted below. The MS/MSD analysis was performed on project sample 13MW5. Associated blanks were interference free, except where noted below. Sample 13MW4 was selected as the blind field duplicate (13MWDUP). No other target analytes were detected in the 13MW4 or the field duplicate. Sample results were reviewed for transcription errors from the instrument data to the laboratory report and no errors were noted, except noted below.

Deviations from specific QA/QC criteria that were identified during the data review process are summarized below.

- The laboratory revised the certificate of analysis to include the initial demonstration of capability data for analyst 2650, the method detection limit study data and passing performance evaluation sample data.
- Hexachloroethane was reported by Method 8260B and 8270C.
- Bis(2-ethylhexyl)phthalate was reported below the QL in the blind field duplicate. Bis(2-ethylhexyl)phthalate was not detected in any project sample and no data qualification was required.
- Although listed on the certificate of analysis separately, 3-methylphenol and 4-methylphenol cannot be analyzed separately due to analytical limitations.
 Methylphenol and 4-methylphenol cannot be resolved under the chromatographic conditions used for sample analysis. The result reported for 4-methylphenol represents the combined total for both compounds.

N-nitrosodiphenylamine converts to diphenylamine during analysis and cannot be
resolved under the chromatographic conditions used for sample analysis. The result
reported as n-nitrosodiphenylamine represents the combined total for both nnitrosodiphenylamine and diphenylamine.

SW-846 Method 6020/3005 - Inorganics-total

Instrument tune, calibration, QL check standard, blank, interference check sample, MS/MSD, LCS, internal standards, serial dilution, sample/field sample duplicate results were met, except where noted below. The MS/MSD samples were analyzed on project sample 13MW5 as noted on the chain of custody. Sample 13MW4 was selected as the blind field duplicate (13MWDUP). Barium was detected at 55.3 µg/l in 13MW4 and 56.1 µg/l in 13MWDUP. Sample/Field Sample Duplicate RPD criteria were met. Chromium was detected above the QL in 13MW4 and below the QL in the field duplicate.

Sample results were reviewed for transcription errors from the instrument data to the laboratory report and no errors were noted.

Deviations from specific QA/QC criteria that were identified during the data review process are summarized below.

- The internal standard relative intensity for Bi209 recovered low (68%R) in sample 13MW6. The result associated with the Bi209 internal standard (lead) was lead. Lead was not detected at or above the detection limit or QL and the QL was qualified as estimated "J" due to the observed QC deviation. Bi209 also recovered low in the ICSA and ICSAB.
- The laboratory reported the inorganic results by Method 6020, instead of Method 6010B as allowed by VDEQ. Target analyte QL were similar and reported concentrations were consistent with historical data. The laboratory was requested to analyze future project samples as noted on the chain of custody.
- The laboratory provided as a revision, the method detection limit study (MDL) and analyst initial demonstration of capability data.

SW-846 Method 7470A - Mercury-total

QL standard, Calibration, blank, MS/MSD, LCS, and sample/field sample duplicate results were met, except where noted below. The MS/MSD was analyzed on project sample 13MW5, as noted on the chain of custody. Mercury was not detected in the sample/field duplicate sample (13MW4/13MWDUP). Sample results were reviewed for transcription errors from the instrument data to the laboratory report and no errors were noted.

No deviations from specific QA/QC criteria were identified during the data review process.

• The laboratory provided as a revision, the method detection limit study (MDL) and analyst initial demonstration of capability data for analyst N. Bolton.

Performance evaluation samples were not evaluated with the sampling event.

SW-846 Methods 8330B/8332 - Explosives/Nitroglycerin

The instrument performance check, instrument calibration, blank, surrogate, MS/MSD, LCS, internal standards, sample/field sample duplicate results, and target analyte identification and quantitation were met, except where noted below. The MS/MSD analysis was performed on project sample 13MW5. Sample 13MW4 was selected as the blind field duplicate (13MWDUP). No target analytes were detected in the sample/field duplicate sample (13MW4/13MWDUP). Sample results were reviewed for transcription errors from the instrument data to the laboratory report and no errors were noted.

Deviations from specific QA/QC criteria that were identified during the data review process are summarized below.

- Low surrogate recovery was observed in sample MW-2 for Methods 8330B/8332. MW-2 was re-extracted within the holding time criteria for Method 8330B (explosives) with acceptable surrogate recoveries. MW-2 was re-extracted outside the holding time criteria for Method 8332 (nitroglycerin) with acceptable recoveries. Nitroglycerin was not detected at or above the detection limit or QL in MW-2 and the nitroglycerin result was qualified as "UJ" to note that the QL is estimated due to the 7-day holding time exceedance.
- The laboratory provided as a revision the analyst initial demonstration of capability data and MDL study data.
- As per the laboratory's narrative from Second Quarter 2009, the data meets the requirements outline in SW-846 8330B. The laboratory will reference 8330B for future events.
- Performance evaluation samples were not evaluated with the sampling event.

US EPA Method 314.0 - Perchlorate

The instrument performance check, instrument calibration, blank, surrogate, MS/MSD, LCS, and sample/field sample duplicate results were met, except where noted below. The laboratory analyzed an initial calibration standard at 4 µg/l, the QL. The MS/MSD analysis was performed on project sample 13MW5. Sample 13MW4 was selected as the blind field duplicate (13MWDUP). Perchlorate was detected at 132.2 µg/l in 13MW4 and 140.8 µg/l in 13MWDUP. Sample/Field Sample Duplicate RPD criteria were met. Sample results were reviewed for transcription errors from the instrument data to the laboratory report and no errors were noted.

No deviations from specific QA/QC criteria were identified during the data review process.

- The laboratory provided the method detection limit study and analyst initial demonstration of capability data as a revision.
- Performance evaluation samples were not evaluated with the sampling event.

LIMITATIONS:

Draper Aden Associates prepared this document (which may include drawings, specifications, reports, studies and attachments) in accordance with the agreement between Draper Aden Associates and the client.

The standard of care for all professional engineering, environmental and surveying and related services performed or furnished by Draper Aden Associates under this Agreement are the care and skill ordinarily used by members of these professions practicing under similar circumstances at the same time and in the same locality. Draper Aden Associates makes no warranties, express or implied, under this Agreement in connection with Draper Aden Associates' services.

Conclusions presented are based upon a review of available information, the results of our field studies, and/or professional judgment. To the best of our knowledge, information provided by others is true and accurate, unless otherwise noted. Draper Aden Associates' liability, hereunder, shall be limited to amounts due Draper Aden Associates for services actually rendered, or reimbursable expenses actually incurred.

Any reuse or modification of any of the aforementioned documents (whether hard copies or electronic transmittals) prepared by Draper Aden Associates without wriften verification or adaptation by Draper Aden Associates will be at the sole risk of the individual or entity utilizing said documents and such use is without the authorization of Draper Aden Associates. Draper Aden Associates shall have no legal liability resulting from any and all claims, damages, losses, and expenses, including attorney's fees arising out of the unauthorized reuse or modification of these documents. Client shall indemnify Draper Aden Associates from any claims arising out of unauthorized use or modification of the documents whether hard copy or electronic.

Draper Aden Associates

This Report has been frepared by:

Janet C. Frazier

Senior Environmental Scientist

2206 South Main Street

Blacksburg, Virginia 24060

540-552-0444,

Hrazieria daa.com

www.daa.com

This Report has been subjected to technical and quality review by:

Śrikanth Nathella, P.E.,

Project Engineer

2206 South Main Street

Blacksburg, Virginia 24060

540-552-0444

snathella(a)daa.com

www.daa.com

7

Date:

1-29-10

Date:

		Result	Result	占	占	
Analyte	Sample ID	(ng/L) Q	(ng/L) Q	(ng/L)	(ng/L)	Validation Notes
Method: 6020						
Laboratory: CompuC	CompuChem, a Division of Liberty Analtyical,	n of Liberty A	naltyical, Cary, NC	NC		
Barium	13MW1	115	115		0.2	No action taken.
	13MW2	169	169	_	0.2	No action taken.
	13MW3	110	110	-	0.2	No action taken.
	13MW4	55.3	55.3	_	0.2	No action taken, Blind field duplicate for 13MWDUP 56.1 ug/l. RPD <10.
	13MW5	108	108	1	0.2	No action taken.
	13MW6	104	104	1	0.2	No action taken.
	13MW7	173	173	-	0.2	No action taken.
	13MWDUP	56.1	56.1	_	0.2	No action taken. Blind field duplicate for 13MW4.
Chromium	13MW1	2.1 B	n	5	=	Result < QL.
	13MW2	2.6 B	n	5	1.1	Result < QL.
	13MW3	2.9 B	ח	5	1.	Result < QL.
	13MW4	5.1	5.1	5	1.1	No action taken. Blind field duplicate for 13MWDUP 4.4 B ug/l.
	13MW5	3.9 B	U	5	1.1	Result $< QL$.
	13MW6	1.6 B	ח	ς.	1.1	Result $< QL$.
	13MW7	1.5 B	n	5	1.1	Result $< QL$.
	13MWDUP	4.4 B	٦	ν,	1.1	Blind field duplicate for 13MW4. Result $<$ QL.
Lead	13MW6	5 U	U J	5	1.5	Analyte not detected. Internal standard (Bi_209) recoverd outside control limits (68%).
Nickel	13MW1	3 B	ū	5	6.0	Result $< QL$.
	13MW2	2.4 B	ם	5	6.0	Result $< QL$.
	13MW3	1.5 B	Ω	5	6.0	Result $< QL$.
	13MW4	4.5 B	ם	5	6.0	Result $< QL$.
	13MW5	2 B	D	2	6.0	Result $<$ QL.
	13MW6	2.5 B	Ω	5	6.0	Result < QL.
	13MW7	51	51	5	6.0	No action taken.
	13MWDUP	4 B	ת	5	6.0	Blind field duplicate for 13MW4. Result $<$ QL.
Selenium	13MW1	3.9 B	ם	5	1	Result $< QL$.
	13MW5	1.6 B	ב	5	1	Result $< QL$.
	13MW6	3.1 B	Ω	S	1	Result < QL.
	13MW7	1.9 B	ב	S	1	Result $< QL$.
Zinc	13MW4	3.9 B	Ω	5	2.7	Result $<$ QL.
	13MW6	6.4	6.4	5	2.7	No action taken.
	13MW7	7.8	7.8	>	2.7	No action taken.
	13MWDUP	4.3 B	n	S	2.7	Blind field duplicate for 13MW4. Result < QL.

Monitoring Event: Fourth Quarter 2009 Comprehensive Data Validation Report

Draper Aden Associates
Epiremig • Survojng • Environmental Services

Radford Facility Army Ammunition Plant: HWMU-13

Analyte Sample ID (ug/L) Q Method: 8260B Laboratory: Lancaster Laboratories, Lancaster, PA Carbon tetrachloride 13MW3 5.7	n) Qi					
Method: 8260B Laboratory: Lancaster Laborato Carbon tetrachloride 13MW3		ig/L) Q	(ug/L) Q (ug/L) (ug/L)	(ng/L)		Validation Notes
Laboratory: Lancaster Laborato Carbon tetrachloride 13MW3						
	ries, La	ncaster, P.	A			
	5.7		5.7 J	0.5	0.1	Analyte not detected. MS recovered high (127%).
13MW5	0.2	Ţ	n	0.5	0.1	Result < QL. MS recovered high (127%).
Chloroform 13MW3	0.7		0.7	0.5	0.1	No action taken.
Tetrachloroethene 13MW7	0.2	<u>.</u>	n	0.5	0.1	Result $< QL$.
Trichloroethene 13MW3	0.9		6.0	0.5	0.1	No action taken.
13MW4	1.4		1.4	0.5	0.1	No action taken.
13MW7	2.1		2.1	0.5	0.1	No action taken.
13MWDUP	P 1.4		1.4	0.5	0.1	No action taken. Blind field duplicate for 13MW4.
Method: 8332						

Laboratory: CompuChem, a Division of Liberty Analtyical, Cary, NC

								1 cm 2 cm	
Nitroglycerin	13MW2	16	Þ	_	_	91	0.77	Analyte not detected. Surrogate recovered low, sample re-extracted outside holding time criteria with acc	otable
								results.	
Method: E314.0									

Laboratory: CompuChem, a Division of Liberty Analtyical, Cary, NC

Perchlorate	13MW1	2.802 J	D.	4	2.632	Result < QL.
	1.3M W.4	132.2	132.2	4	2.632	No action taken. Blind field duplicate 140.8 ug/l. RPD < 10 .
	13MW6	5.156	5.156	4	2.632	No action taken.
	13MW7	3.805 J	ם	4	2.632	Result < QL.
	13MWDUP	140.8	140.8	4	2.632	No action taken. Blind field duplicate for 13MW4, 132.2 ug/l. RPD < 10.

Definitions: QL Denotes quantitation limit. DL Denotes detection limit. Q Denotes data qualifier. U Denotes analyte not detected at or above QL.

UA Denotes analyte not detected at or above adjusted sample QL. J Denotes analyte reported at or above QL and associated result is estimated due to quality control reasons. When used with "UJ"), denotes analyte not detected at or above QL and QL is estimated due to quality control reasons. When used with "UA" (i.e., "UAJ"), denotes analyte at or above adjusted QL and adjusted QL is estimated due to quality control reasons. R Denotes result rejected.

B or J denotes result between detection limit and QL. Estimated result. B and J are laboratory result data qualifiers.

Appendix IX Monitoring Events:

For Appendix IX Monitoring Events, results are reported to the detection limit.

Appendix IX Monitoring Events: First Quarter 2006 (First Appendix IX Monitoring Event for unit). Second Quarter 2007. Second Quarter 2008. Second Quarter 2009.

Analyte Sample (302) (apl.) of (apl.) (apl			Result	Result		۵L	DF	
thod: 6020 No action labeles brown Provincery: Compar/Ceens, a Division of Liberty Annipitical, Carp. 1 2 2 2 2 2 2 2 3 4 4 2 2 2 3 4	Analyte	Sample ID		(ng/L)				alidation Notes
ton attenty: Compare Cheam, a Division of Libercy Attacks (Arch.), MC No action taken. No action taken. tum 1334/N1 (2) 123 1 0.2 No action taken. 1334/N1 (12) (13) (13) (13) (13) (13) (14) (15) <t< th=""><th>Method: 6020</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	Method: 6020							
tom 13MW1 120 120 1 0.2 13MW2 147 147 1 0.2 13MW3 81 1 1 0.2 13MW4 41.5 41.5 1 0.2 13MW6 136 166 1 1 0.2 13MW9 41 4 8 4 1 0.2 13MW9 1.6 8 1.2 1 0.2 13MW9 1.6 8 1.6 1 0.2 13MW9 1.6 8 1.6 1 0.2 13MW9 1.6 8 1.6 1 5 1.1 13MW9 1.6 8 1.6 1 5 1.1 13MW9 1.5 8 1.6 1 5 1.1 13MW9 2.1 8 2.4 1 5 1.1 13MW9 2.2 8 2.2 1 5 1		hem, a Divisio	n of Liberty An	alytical, C	ary, NC			
13MW2	Barium	13MW1	120	120	porm.		5.2	No action taken.
13MW4		13MW2	147	147	poor		5.2	No action taken.
13MW4 41.5 41.5 41.5 1 0.2 13MW5 106 106 106 1 0 1 0.2 13MW6 75.8 75.8 1 1 0.2 13MWDDP 41 4 8 74 1 1 0.2 13MWDDP 1.6 8 1.6 1 0 2 13MWN 1.6 8 1.6 1 5 1.1 13MWN 1.6 8 1.6 1 5 1.1 13MWN 1.4 8 1.4 1 5 1.1 13MWN 1.4 8 1.4 1 5 1.1 13MWN 2.4 8 2.4 1 5 1.1 13MWN 2.4 8 2.4 1 5 0.9 13MWN 2.4 8 2.4 1 5 0.9 13MWN 2.5 8 2.5 1 0.9 13M		13MW3	81	81 J	porma.		5.2	Serial dilution % Difference > 10% (33%).
13MW6 75.8 106 1 1 0.2 13MW7 125 125 1 1 0.2 13MW9 41 4 8 4 1 0 1 0.2 13MW1 4 8 4 1 0 1 0.2 13MW2 1.6 8 1.6 1 0 5 1.1 13MW3 1.6 8 1.6 1 5 1.1 13MW9 1.5 8 1.4 1 5 1.1 13MW9 1.4 8 1.4 1 5 1.1 13MW9 1.5 8 1.4 1 5 1.1 13MW9 1.5 8 1.4 1 5 1.1 13MW9 2.2 8 2.2 1 5 0.9 13MW9 2.2 8 2.2 1 5 0.9 13MW9 2.5 8 2.2 1 5 0.9 13MW9 2.5 8 2.5 1 0.9 13MW9 2.5 0.9 0.9 13MW9		13MW4	41.5	41.5 J			5.2	Serial dilution % Difference > 10% (33%).
13MWG 75.8 75.8 1 0.2 13MWDUP 41 1.5 1.55 1 0.2 13MWDUP 41 4 8 4 1 0.2 13MWD 1.6 8 1.9 1 0.2 13MW3 1.6 8 1.6 1 5 1.1 13MW4 1.6 8 1.4 1 5 1.1 13MWDUP 1.5 8 1.4 1 5 1.1 13MWDUP 1.5 8 1.4 1 5 1.1 13MWDUP 1.5 8 1.4 1 5 1.1 13MWM 2.4 8 2.4 1 5 0.9 13MWM 2.5 8 2.2 1 5 0.9 13MWM 2.5 8 2.2 1 5 0.9 13MWM 2.5 8 2.5 1 0.5 0.9 13MWM 2.1 8 2.2 1 0.5 0.9 13MWM 2.1 0.5 0.5 0.5 0.9 13MWM 2.1 0.5 0.5 0.5 0.9 13MWM 2.1 0.5 0.5 0.5 0.5		13MW5	106	106 J	1		0.2	Serial dilution % Difference > 10% (33%).
saw 125 125 1 62 13MWDUP 41 4 1 1 02 name 13MW1 4 B 4 1 1 02 13MW2 1.9 B 1.9 1 5 1.1 02 13MW2 1.6 B 1.6 1 5 1.1 02 13MW4 1.6 B 1.6 1 5 1.1 02 13MW5 1.3 B 1.6 1 5 1.1 02 13MW6 1.4 B 1.4 B 1.4 1 5 1.1 13MW6 1.5 B 1.4 1 5 1.1 1.1 1.1 13MW6 2.1 B 2.2 1 5 0.9 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1		13MW6	75.8	75.8 J	_		5.2	Serial dilution % Difference > 10% (33%).
sawbup 41 41 41 5 10 nomium 13MW1 4 B 4 1 5 1.1 0.2 13MW2 1.9 B 1.9 1 5 1.1 0.2 13MW4 1.6 B 1.6 1 5 1.1 0.1 13MW6 1.4 B 1.6 1 5 1.1 0.1 13MW7 1.4 B 1.4 D 5 1.1 0.0 13MW6 1.5 B 1.4 D 5 1.1 0.0 13MW9 1.5 B 1.4 D 5 1.1 0.0 13MW9 2.1 B 2.4 D 5 0.0 0.0 13MW9 2.2 B 2.2 D 5 0.0 0.0 13MW9 2.2 B 2.6 D 5 0.0 0.0 13MW9 2.1		13MW7	125	125 J	-		5.2	Serial dilution % Difference > 10% (33%).
nomium 13MW1 4 B 4 J 5 1.1 13MW2 1,9 B 1,9 J J J J J 13MW3 1,6 B 1,6 J J S 1,1 13MW4 1,6 B 1,6 J S 1,1 13MW6 1,4 B 1,4 J S 1,1 13MW7 1,4 B 1,4 J S 1,1 13MW8 2,2 B 2,4 J S 1,1 13MW7 2,2 B 2,4 J S 1,1 13MW8 2,2 B 2,2 J S 0,9 13MW9 2,2 B 2,2 J S 1,1 13MW8 2,2 B 2,2 J S 1,2 13MW9 2,2 B 2,2 J S 1,2 13MW		13MWDUP	41	41 J	-		5.2	Serial dilution % Difference > 10% (33%). Field duplicate for 13MW4.
13MW2 1.9 1.9 1.9 1.9 1.9 1.1 1.	Chromium	13MW1		4 J	5		1.1	Result < QL.
13MW3 1.6 B 1.6 J 5 1.1 13MW4 1.6 B 1.6 J 5 1.1 13MW8 1.4 B 1.4 J 5 1.1 13MW9 1.4 B 1.4 J 5 1.1 13MW9 1.5 B 1.4 J 5 1.1 13MW9 2.4 B 2.4 J 5 1.1 13MW9 2.1 B 2.2 J 5 0.9 13MW9 2.2 B 2.2 J 5 0.9 13MW9 2.2 B 2.2 J 5 0.9 13MW9 2.2 B 2.2 J 5 0.9 13MW9 2.1 B 2.2 J 5 0.9 13MW9 2.1 B 2.2 J 5 0.9 13MW9 2.1 B 2.2 J 5 1 13MW9 2.1 U U J D 2.1 13MW9 2.1 U U J D D 2.1 13MW9 2.1 U U U J D D 2.1 13MW9 2.1 U U U J D D 2.1 2.1 U U U U U U D D D D		13MW2		I.9 J	5			Result < QL.
13MW4 1.6 B 1.6 J 5 1.1 13MW5 3.3 B 3.3 J 5 1.1 13MW6 1.4 B 1.4 J 5 1.1 13MWDUP 1.5 B 1.4 J 5 1.1 13MWDUP 1.5 B 1.4 J 5 1.1 13MW4 2.0 B 2.2 J 5 0.9 13MW5 2.1 B 2.2 J 5 0.9 13MW5 2.2 B 2.2 J 5 0.9 13MW5 2.1 B 2.2 J 5 0.9 13MW6 3.7 B 2.2 J 5 0.9 13MW7 2.2 B 2.2 J 5 0.9 13MW8 2.1 B 2.1 J 5 1 13MW8 2.1 D D D D D 13MW8 2.1 D D D D D 13MW8 2.1 D D D D D 13MW8 2.1 D D D 13MW8 2.1 D D D D 13MW8 2.1 D D D 14MW8 2.1 D D D 15MW8 2.1 D D D 15MW8		13MW3		1.6 J	S			Result < QL.
13MW6		13MW4		1.6 J	5		1.1	Result < QL.
13MW6		13MW5		3.3 J	5			Result < QL.
13MW7 1.4 B 1.4 J 5 1.1 13MWDUP 1.5 B 1.5 J 5 1.1 13MW2 2.2 B 2.4 J 5 0.9 13MW3 2.1 B 2.1 J 5 0.9 13MW4 2.6 B 2.9 J 5 0.9 13MW6 3.7 B 3.7 J 5 0.9 13MW0UP 2.6 B 2.6 J 5 0.9 13MW0UP 2.6 B 2.6 J 5 0.9 13MW5 2.1 B 2.1 J 5 0.9 13MW6 3.2 B 2.3 J 5 1 13MW7 2.3 B 2.3 J 5 1 13MW8 2.1 U U J 10 2.1 13MW6 2.1 U U J 10 2.1 13MW7 2.1 U U J 10 2.1 13MW6 2.1 U U J 10 2.1 13MW7 2.1 U U J 10 2.1 2.1 U U J U U J 10 2.1 U U J U U J U U U U		13MW6		1.4 J	5			Result < QL.
13MWDUP 1.5 B 1.5 J 5 1.1 13MW1		13MW7		1.4	5		1.1	Result < QL.
cel 13MW1 2.4 B 2.4 J 5 0.9 13MW2 2.2 B 2.2 J 5 0.9 13MW3 2.1 B 2.1 J 5 0.9 13MW4 2.6 B 2.9 J 5 0.9 13MW6 3.7 B 2.9 J 5 0.9 13MW0UP 2.6 B 2.6 J 5 0.9 13MW5 2.1 B 2.6 J 5 0.9 13MW7 2.2 2 J 5 0.9 13MW7 2.1 B 2.6 J 5 0.9 13MW8 2.1 U U J 5 1 13MW8 2.1 U U J 10 2.1 13MW8 2.1 U U J 10 2.1 13MW8 2.1 U U J		13MWDUP		1.5 J	5		==	Result < QL. Field duplicate for 13MW4.
13MW2 2.2 B 2.2 J 5 0.9 13MW3 2.1 B 2.1 J 5 0.9 13MW4 2.6 B 2.6 J 5 0.9 13MW6 3.7 B 2.9 J 5 0.9 13MWDUP 2.2 222 5 0.9 13MWDUP 2.6 B 2.6 J 5 0.9 13MW5 2.1 B 2.6 J 5 0.9 13MW5 2.1 B 2.1 J 5 1 13MW5 2.1 U U J 5 1 13MW5 2.1 U U J 10 2.1 13MW6 2.1 U U J 10 2.1 13MW7 2.1 U U J 10 2.1 13MW7 2.1 U U J 10 2.1 13MW7 2.1 U U J 0 2.1	Nickel	13MW1		2.4 J	5		9.0	Result $<$ QL .
13MW3 2.1 B 2.6 J 5 0.9 13MW4 2.6 B 2.6 J 5 0.9 13MW5 2.9 B 2.9 J 5 0.9 13MW7 2.2 222 5 0.9 13MWDUP 2.6 B 2.6 J 5 0.9 13MW5 2.1 B 2.1 J 5 1 13MW6 3.2 B 2.1 J 5 1 13MW3 2.1 U U J 10 2.1 13MW6 2.1 U U J 10 2.1 13MW6 2.1 U U J 10 2.1 13MW7 2.1 U U J 10 2.1 <		13MW2		2.2 J	5		9.0	Result < QL.
13MW4 2.6 B 2.6 J 5 0.9 13MW5 2.9 B 2.9 J 5 0.9 13MW6 3.7 B 3.7 J 5 0.9 13MWDUP 2.6 B 2.6 J 5 0.9 13MW5 2.1 B 2.6 J 5 1 13MW6 3.2 B 2.1 J 5 1 13MW3 2.1 U U J 5 1 13MW6 2.1 U U J 10 2.1 13MW6 2.1 U U J 10 2.1 13MW7 2.1 U U J 10		13MW3		2.1 J	5		6.0	Result < Q.L.
13MW5 2.9 B 2.9 J 5 0.9 13MW6 3.7 B 3.7 J 5 0.9 13MW7 2.2 222 5 0.9 13MW9UP 2.6 B 2.6 J 5 0.9 13MW5 2.1 B 2.1 J 5 1 13MW6 3.2 B 2.1 J 5 1 13MW7 2.3 B 2.3 J 5 1 13MW6 2.1 U U J 10 2.1 13MW6 2.1 U U J 10 2.1 13MW7 2.1 U U J 10 2.1 13MW7 2.1 U U J 10 2.1 13MW7 2.1 U U J 10 2.1		13MW4		2.6	5		6.0	Result < QL.
13MW6 3.7 B 3.7 J 5 0.9 13MW7 222 222 5 0.9 13MWDUP 2.6 B 2.6 J 5 0.9 13MW5 2.1 B 2.1 J 5 1 13MW6 3.2 B 2.1 J 5 1 13MW7 2.3 B 2.3 J 5 1 13MW6 2.1 U U J J 2.1 13MW6 2.1 U U J J 2.1 13MW7 2.1 U U J J 2.1 13MW7 2.1 U U J J 2.1		13MW5		2.9 J	5		6.0	Result < QL.
13MW7 222 222 6 6 6 6 6 6 6 6 6 6 6 6 6 9 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 1 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1		13MW6		3.7	5		6.0	Result < QL.
13MWDUP 2.6 B 2.6 J 5 0.9 13MWs 2.1 B 4 J 5 1 13MWs 2.1 B 2.1 J 5 1 13MWs 2.3 B 2.3 J 5 1 13MWs 2.1 U U J J 1 13MWs 2.1 U U J J 2.1		13MW7	222	222	5		9.0	No action taken.
nium 13MW1 4 B 4 J 5 1 13MW5 2.1 B 2.1 J 5 1 13MW6 3.2 B 2.3 J 5 1 13MW3 2.1 U U J 10 2.1 13MW6 2.1 U U J 10 2.1 13MW7 2.1 U U J 10 2.1 13MW7 2.1 U U J 10 2.1		13MWDUP		2.6 J	5		9.0	Result < QL. Field duplicate for 13MW4.
13MW5 2.1 B 2.1 J 5 I 13MW6 3.2 B 3.2 J 5 I 13MW3 2.1 U U J J J J 13MW6 2.1 U U J J 2.1 J	Selenium	13MW1		4 J	S		_	Result < QL.
13MW6 3.2 B 3.2 J 5 J 13MW7 2.3 B 2.3 J 5 J 13MW4 2.1 U U J J 10 2.1 13MW6 2.1 U U J J 10 2.1 13MW7 2.1 U U J J 0 2.1		13MW5		2.1 J	S			Result < QL.
13MW7 2.3 B 2.3 J 5 J 13MW3 2.1 U U J 10 2.1 13MW4 2.1 U U J 10 2.1 13MW6 2.1 U U J 10 2.1 13MW7 2.1 U U J 10 2.1		13MW6		3.2 J	5			Result < QL.
13MW3 2.1 U U J 10 2.1 13MW4 2.1 U U J 10 2.1 13MW6 2.1 U U J 10 2.1 13MW7 2.1 U U J 10 2.1		13MW7		2.3 J	5		_	Result < QL.
2.1 U U J 10 2.1 2.1 U U J 10 2.1 2.1 U U J 10 2.1 2.1 U U J 3 10 2.1	Tin	13MW3		U J	Ī		2.1	Target analyte not detected at or above the detection limit. MS/MSD recovered low (38%).
2.1 U U J 10 2.1 2.1 U U J 10 2.1 2.1 U U J 10 2.1		13MW4		U J	Ĩ		2.1	Target analyte not detected at or above the detection limit. MS/MSD recovered low (38%).
2.1 U U J 10 2.1 2.1 U U J 10 2.1		13MW5		U J	Ē		2.1	Target analyte not detected at or above the detection limit. MS/MSD recovered low (58%).
2.1 U U J 10 2.1		13MW6		U J	ī		2.1	Target analyte not detected at or above the detection limit. MS/MSD recovered low (38%).
		13MW7		u J	Ä		2.1	Target analyte not detected at or above the detection limit. MS/MSD recovered low (58%).

APPENDIX C

CONSTITUENT BACKGROUND VALUES FOR THE COMPLIANCE GROUNDWATER MONITORING PROGRAM

RADFORD ARMY AMMUNITION PLANT – OPEN BURNING GROUND CALCULATION OF CONSTITUENT BACKGROUND VALUES FOR THE COMPLIANCE GROUNDWATER MONITORING PROGRAM CONSTITUENTS

Draper Aden Associates calculated background values for the Compliance Groundwater Monitoring Program (CGMP) constituents for the Open Burning Ground located at the Radford Army Ammunition Plant (Radford AAP) in Radford, Virginia. Background values were calculated for the additional CGMP constituents that are not on the Detection Groundwater Monitoring Program (DGMP) list.

Previously the background values for the DGMP constituents were calculated in May 2005. With the exceptions of carbon tetrachloride, chlorobenzene, hexachloroethane, methyl chloride, methlyene chloride, and perchlorate, the background values for each constituent listed in the DGMP were calculated using the analytical data for upgradient wells 13MW1 and 13MW2 from First Quarter 1996 through First Quarter 2005. Groundwater monitoring for carbon tetrachloride, chlorobenzene, hexachloroethane, methyl chloride, methlyene chloride, and perchlorate began in Fourth Quarter 2003; therefore, the background values for those six constituents were calculated using the analytical data for upgradient wells 13MW1 and 13MW2 from Fourth Quarter 2003 through First Quarter 2005. The background value calculations were based on site-wide 95% confidence, 95% coverage upper prediction intervals.

The background values for CGMP constituents not on the DGMP list were calculated using the analytical data for upgradient wells 13MW1 and 13MW2 from Fourth Quarter 2005 through Fourth Quarter 2006. The calculated background values for all target constituents are listed on **Table 1**.

Background Data and Background Value Calculations

Statistical calculations of background values were performed using the analytical data from upgradient wells 13MW1 and 13MW2 as background data. The methods of statistical analysis were dependent on the percentage of non-detects and the distribution of the background data. All CGMP constituents not on the DGMP list were 100% non-detected (<LOQ) in the background wells. The background values for these constituents were established as equal to their quantitation limits (QL). The one exception was bis(2-ethylhexyl)phthalate for which the background value was established as 6 μ g/l (USEPA Maximum Contaminant Level (MCL)) whereas its LOQ is 10 μ g/l. When GPS is less than the LOQ, constituent concentrations will be compared to the LOQ.

Backgr	ound Value =	Quantitation Lin	nit (QL)	
			\mathbf{QL}	Background Value
Constituent	Sample Size	% Non-Detects	$(\mu g/l)$	(µg/l)
Cadmium	10	100	1	1
Nickel	10	100	5	5
Selenium	10	100	5	5
Zinc	10	100	5	5
Acetophenone	10	100	10	10
Benzyl chloride	8	100	5	5
Benzo[a]anthracene	10	100	10	10

DAA JN: B03204-101 1 December 20, 2006

Backg	round Value =	Quantitation Lin	nit (QL)	
			QL	Background Value
Constituent	Sample Size	% Non-Detects	(µg/l)	(µg/l)
Benzo[b]fluoranthene	10	100	10	10
Benzo[k]fluoranthene	10	100	10	10
Benzo[a]pyrene	10	100	10	10
Chloromethane	10	100	5	5
Bis(2-ethylhexyl)phthalate	10	100	10	6
Butyl benzyl phthalate	10	100	10	10
Chloroform	10	100	1	1
2-Chlorophenol	10	100	10	10
Dibenz(a, h)anthracene	10	100	10	10
Dibenzofuran	10	100	10	10
1,2-Dichloroethane	10	100	1	1
1,1-Dichloroethene	10	100	1	1
2,4-Dichlorophenol	10	100	10	10
3,3'-Dimethylbenzidine	10	100	10	10
Dimethyl phthalate	10	100	10	10
m-Dinitrobenzene	10	100	2.5	2.5
2,6-Dinitrotoluene	10	100	5	5
Di-n-octyl phthalate	10	100	10	10
Fluoranthene	10	100	10	10
Indeno[1,2,3-cd]pyrene	10	100	10	10
Bromomethane	10	100	1	1
3&4-Methylphenol	10	100	20	20
Naphthalene	10	100	1	1
Nitrobenzene	10	100	10	10
p-Nitrophenol	10	100	20	20
Phenol	10	100	10	10
Pyrene	10	100	10	10
Tetrachloroethene	10	100	1	1
Toluene	10	100	5	5
Trichloroethene	10	100	1	1
sym-Trinitrobenzene	10	100	2.5	2.5
Vinyl chloride	10	100	1	1

TABLE 1

OPEN BURNING GROUND CALCULATED BACKGROUND VALUES

Constituent	Background Value				
	(μg/l unless otherwise noted)				
DGMP	P Parameters				
Antimony	6				
Arsenic	5				
Barium	228				
Chromium	112				
Lead	14.0				
Mercury	2.52				
Silver	2.4				
Acetone	25				
Benzene	5				
Carbon Tetrachloride	5				
Chlorobenzene	5				
Methyl chloride	5				
Methylene chloride	5				
Toluene	5				
2,4-Dinitrotoluene	10				
Di-n-butylphthalate	10				
Diethyl phthalate	10				
Diphenylamine	10				
Hexachloroethane	10				
Nitroglycerine	10 mg/l				
Perchlorate	4				
Total Phenols	20.0				
Nitrate	1,311				
Nitrite	100				
Sulfate	88,000				
Total Organic Carbon	10,600				
Total Organic Halides	54.5				
Specific Conductivity	6,870 μS/cm				
pH	5.72 – 7.80 pH units				
CGMP Parameters not on DGMP List					
Cadmium	1				
Nickel	5				
Selenium	5				
Zinc	5				
Acetophenone	10				
Benzyl chloride	5				
Benzo[a]anthracene	10				
Benzo[b]fluoranthene	10				
Benzo[k]fluoranthene	10				
Benzo[a]pyrene	10				
Chloromethane	5				
Bis(2-ethylhexyl)phthalate	6				

Constituent	Background Value		
	(μg/l unless otherwise noted)		
Butyl benzyl phthalate	10		
Chloroform	1		
2-Chlorophenol	10		
Dibenz(a, h)anthracene	10		
Dibenzofuran	10		
1,2-Dichloroethane	1		
1,1-Dichloroethene	1		
2,4-Dichlorophenol	10		
3,3'-Dimethylbenzidine	10		
Dimethyl phthalate	10		
m-Dinitrobenzene	2.5		
2,6-Dinitrotoluene	5		
Di-n-octyl phthalate	10		
Fluoranthene	10		
Indeno[1,2,3-cd]pyrene	10		
Bromomethane	1		
3&4-Methylphenol	20		
Naphthalene	1		
Nitrobenzene	10		
p-Nitrophenol	20		
Phenol	10		
Pyrene	10		
Tetrachloroethene	1		
Toluene	5		
Trichloroethene	1		
sym-Trinitrobenzene	2.5		
Vinyl chloride	1		

APPENDIX A

OPEN BURNING GROUND
BACKGROUND VALUE CALCULATIONS FOR DGMP PARAMETERS

RADFORD ARMY AMMUNITION PLANT – OPEN BURNING GROUND CALCULATION OF CONSTITUENT BACKGROUND VALUES FOR THE DETECTION GROUNDWATER MONITORING PROGRAM

Draper Aden Associates calculated background values for each constituent listed in the Detection Groundwater Monitoring Program (DGMP) dated September 2003 for the Open Burning Ground located at the Radford Army Ammunition Plant (Radford AAP) in Radford, Virginia. With the exceptions of carbon tetrachloride, chlorobenzene, hexachloroethane, methyl chloride, methlyene chloride, and perchlorate, the background values for each constituent listed in the DGMP were calculated using the analytical data for upgradient wells 13MW1 and 13MW2 from First Quarter 1996 through First Quarter 2005. Groundwater monitoring for carbon tetrachloride, chlorobenzene, hexachloroethane, methyl chloride, methlyene chloride, and perchlorate began in Fourth Quarter 2003; therefore, the background values for those six constituents were calculated using the analytical data for upgradient wells 13MW1 and 13MW2 from Fourth Quarter 2003 through First Quarter 2005. The background value calculations were based on site-wide 95% confidence, 95% coverage upper prediction intervals. The calculated background values are listed in **Table 1**.

Background Data and Statistical Calculations

Statistical calculations of background values were performed using the analytical data from upgradient wells 13MW1 and 13MW2 as background data. Based on the percentage of non-detects and the distribution of the background data, methods of statistical calculations varied. Background average, standard deviation and other descriptive statistical data were computed for all constituents and are presented in **Appendix A**.

The constituents listed below were 100% non-detected (<LOQ) in the background wells. The background values for these constituents were established as equal to their quantitation limits (QL).

Background Value = Quantitation Limit (QL)				
Parameter	Sample Size	% Non-Detects	QL (μg/l)	Background Value (µg/l)
Acetone	74	100	25	25
Benzene	74	100	5	5
Carbon tetrachloride	12	100	5	5
Chlorobenzene	12	100	5	5
Methyl chloride	12	100	5	5
Methylene chloride	12	100	5	5
Toluene	74	100	5	5
2,4-Dinitrotoluene	74	100	10	10
Di-n-butylphthalate	74	100	10	10
Diethyl phthalate	74	100	10	10
Diphenylamine	74	100	10	10
Hexachloroethane	12	100	10	10
Nitroglycerine	74	100	10 mg/l	10 mg/l
Perchlorate	12	100	4	4
Nitrite	61	100	100	100

Non-parametric prediction intervals were computed for all of the constituents for which the data from upgradient wells 13MW1 and 13MW2 satisfied one of the following two criteria, per VDEQ regulations and guidance as well as USEPA guidance:

- Percentage of non-detects was greater than or equal to 50 and less than 100; or
- Percentage of non-detects was less than 50, but data was not normally distributed in original or log-transformed mode.

The background values for these constituents were set as equal to their upper prediction limits (UPLs), with one exception. For pH, a two-sided parametric prediction interval was computed; therefore, the background value for pH consists of a range between the lower prediction limit (LPL) and the UPL. The background and relevant statistical data for these constituents are summarized below. Associated statistical computations are presented in **Appendix A**.

Background Value = UPL of Non-parametric Prediction Interval Background Value for pH = LPL – UPL of two-sided Prediction Interval				
Parameter	Sample Size	% Non-Detects	QL (μg/l)	Background Value (μg/l)
Antimony	74	99	5	6
Arsenic	74	93	5	5
Chromium	74	31	5	112
Lead	74	69	5	14.0
Mercury	74	99	2	2.52
Silver	74	92	2	2.4
Total Phenols	74	97	5	20.0
Total Organic Carbon	74	73	1,000	10,600
Total Organic Halides	74	85	20	54.5
Sulfate	61	0	1,000	88,000
рН	62	0	0.1 pH units	5.72 – 7.80 pH units
Specific Conductivity	62	0	1 μS/cm	6,870 μS/cm

The following constituents exhibited normally or ln-normally distributed background data with less than 25% non-detects. One sided parametric prediction intervals were computed on the background data for each of these constituents. The background values for these constituents were set as equal to their UPLs. The background concentration calculations were based on a site wide 95% confidence, 95% coverage upper prediction intervals. When adjusted for multiple comparisons of the background data, the false positive rate was 5% (0.05). The background and relevant statistical data for these constituents are summarized below. The prediction interval computations for these constituents are presented in **Appendix A**.

Background Value = UPL of one-sided Prediction Interval				
Parameter	Sample Size	% Non-Detects	QL (µg/l)	Background Value (µg/l)
Barium	74	0	10	228
Nitrate	61	3	100	1,311

TABLE 1

OPEN BURNING GROUND CALCULATED BACKGROUND VALUES

Constituent	Background Value		
	(μg/l unless otherwise noted)		
Antimony	6		
Arsenic	5		
Barium	228		
Chromium	112		
Lead	14.0		
Mercury	2.52		
Silver	2.4		
Acetone	25		
Benzene	5		
Carbon Tetrachloride	5		
Chlorobenzene	5		
Methyl chloride	5		
Methylene chloride	5		
Toluene	5		
2,4-Dinitrotoluene	10		
Di-n-butylphthalate	10		
Diethyl phthalate	10		
Diphenylamine	10		
Hexachloroethane	10		
Nitroglycerine	10 mg/l		
Perchlorate	4		
Total Phenols	20.0		
Nitrate	1,311		
Nitrite	100		
Sulfate	88,000		
Total Organic Carbon	10,600		
Total Organic Halides	54.5		
Specific Conductivity	6,870 μS/cm		
рH	5.72 – 7.80 pH units		

APPENDIX A

OPEN BURNING GROUND
BACKGROUND VALUE STATISTICAL CALCULATIONS

RAAP - Open Burning Ground (HWMU-13) - Statistical Analysis - Background Calculation May 10, 2005

1) Y2K Correction dates on GRITS/STAT software are as shown in the table below.

Actual Event Date	Date Used in Stat Software	Notes
1st Quarter 2000	12/10/1999	
2nd Quarter 2000	12/11/1999	
3rd Quarter 2000	12/12/1999	
4th Quarter 2000	12/13/1999	
1st Quarter 2001	12/14/1999	
2nd Quarter 2001	12/15/1999	
3rd Quarter 2001	12/16/1999	
4th Quarter 2001	12/17/1999	
1st Quarter 2002	12/18/1999	
2nd Quarter 2002	12/19/1999	
3rd Quarter 2002	12/20/1999	
4th Quarter 2002	12/21/1999	
1st Quarter 2003	12/22/1999	
2nd Quarter 2003	12/23/1999	
3rd Quarter 2003	12/24/1999	
4th Quarter 2003	12/25/1999	
1st Quarter 2004	12/26/1999	
2nd Quarter 2004	12/27/1999	
3rd Quarter 2004	12/28/1999	
4th Quarter 2004	12/29/1999	
1st Quarter 2005	12/30/1999	

- 2) No adjustments for multiple comparisons could be made for non-parametric UPLs and where UPL=QL. Any Statistically significant increase (SSI) must be confirmed by verification sampling.
- 3) No data available for pH and Specific conductivity from 2nd Qtr 1996 2nd Qtr 1997.
- 4) Background for chlorobenzene, Carbon tetrachloride, Methyl Chloride (Chloromethane), Methylene Chloride (Dichloromethane), Hexachloroethane and Perchlorate based on 4th Quarter 2003 to 1st Quarter 2005 data.
- 5) Background for all other target constituents based on 1st Quarter 1996 through 1st Quarter 2005 data.

P:\B03\200\B03204\B03204-03\WORK\[StatDate correction.xls]Statcorrection dates

Report Printed: 05-10-2005 20:01

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford

ST:VA Zip:

County:PULASKI

Contact:

Phone:() -

Permit Type: Detection

Constituent: CCl4 Carbon tetrachloride

CAS Number: 56-23-5

MCL:

5.000 ppb

ACL:

0.000 ppb

Detect Limit:

10.000 ppb

Start Date: Mar 31 1996 End Date: Dec 30 1999

Well ID:13MW1

Sample Date	Observation	Ln
Dec 25 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 26 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 27 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 28 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 29 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 30 1999	5.000 ppb	1.609 (* Nondetect *)

Well ID:13MW1 **Summary Statistics**

Observations (N):

Nondetects (%ND):100

5.000 ppb 5.000 ppb Minimum: Ln Minimum: 1.609 Maximum: Ln Maximum: 1.609 5.000 ppb 0.000 ppb Mean: 1.609 Ln Mean: Std. Dev.: Ln Std. Dev.: 0.000

Dec 25 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 26 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 27 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 28 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 29 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 30 1999	5.000 ppb	1.609 (* Nondetect *)

Observations (N): 6 Nondetects (%ND):100

 Minimum:
 5.000 ppb
 Ln Minimum:
 1.609

 Maximum:
 5.000 ppb
 Ln Maximum:
 1.609

 Mean:
 5.000 ppb
 Ln Mean:
 1.609

 Std. Dev.:
 0.000 ppb
 Ln Std. Dev.:
 0.000

Report Printed: 05-10-2005 20:01

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:VA Zip:

County:PULASKI

Contact:

Phone:() -

Permit Type:Detection

Constituent: ChlBenz Chlorobenzene

CAS Number: 108-90-7

MCL: 100.000 ppb ACL: 0.000 ppb Detect Limit: 10.000 ppb

Start Date: Mar 31 1996 End Date: Dec 30 1999

Well ID:13MW1

Sample Date Observation Ln Dec 25 1999 5.000 ppb 1.609 (* Nondetect *) 5.000 ppb 5.000 ppb Dec 26 1999 1.609 (* Nondetect *) Dec 27 1999 1.609 (* Nondetect *) 5.000 ppb 1.609 (* Nondetect *) Dec 28 1999 5.000 ppb Dec 29 1999 1.609 (* Nondetect *) Dec 30 1999 5.000 ppb 1.609 (* Nondetect *)

Well ID:13MW1 Summary Statistics

Observations (N): 6 Nondetects (%ND):100

 Minimum:
 5.000 ppb
 Ln Minimum:
 1.609

 Maximum:
 5.000 ppb
 Ln Maximum:
 1.609

 Mean:
 5.000 ppb
 Ln Mean:
 1.609

 Std. Dev.:
 0.000 ppb
 Ln Std. Dev.:
 0.000

Dec 25 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 26 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 27 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 28 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 29 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 30 1999	5.000 ppb	1.609 (* Nondetect *)

Observations (N): 6 Nondetects (%ND):100

 Minimum:
 5.000 ppb
 Ln Minimum:
 1.609

 Maximum:
 5.000 ppb
 Ln Maximum:
 1.609

 Mean:
 5.000 ppb
 Ln Mean:
 1.609

 Std. Dev.:
 0.000 ppb
 Ln Std. Dev.:
 0.000

Report Printed: 05-10-2005 20:01

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford

ST:VA Zip:

County: PULASKI

Contact:

Phone:() -

Permit Type:Detection

Constituent: ChlMeth Chloromethane

CAS Number:

74-87-3

MCL:

0.000 ppb

ACL: Detect Limit:

0.000 ppb 10.000 ppb

Start Date:Mar 31 1996 End Date:Dec 30 1999

Well ID:13MW1

Sample Date		Ln
Dec 25 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 26 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 27 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 28 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 29 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 30 1999	5.000 ppb	1.609 (* Nondetect *)

Well ID:13MW1 Summary Statistics

Observations (N): 6 Nondetects (%ND):100

 Minimum:
 5.000 ppb
 Ln Minimum:
 1.609

 Maximum:
 5.000 ppb
 Ln Maximum:
 1.609

 Mean:
 5.000 ppb
 Ln Mean:
 1.609

 Std. Dev.:
 0.000 ppb
 Ln Std. Dev.:
 0.000

Dec 25 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 26 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 27 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 28 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 29 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 30 1999	5.000 ppb	1.609 (* Nondetect *)

Observations (N): 6 Nondetects (%ND):100

 Minimum:
 5.000 ppb
 Ln Minimum:
 1.609

 Maximum:
 5.000 ppb
 Ln Maximum:
 1.609

 Mean:
 5.000 ppb
 Ln Mean:
 1.609

 Std. Dev.:
 0.000 ppb
 Ln Std. Dev.:
 0.000

Report Printed: 05-10-2005 20:02

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford

ST:VA Zip:

County:PULASKI

Contact:

Phone:() -

Permit Type: Detection

Constituent:DiClMe Dichloromethane

CAS Number:

75-09-2

MCL:

5.000 ppb

ACL: Detect Limit: 0.000 ppb

10.000 ppb

Start Date: Mar 31 1996 End Date: Dec 30 1999

Well ID:13MW1

Sample Date Observation Ln 5.000 ppb Dec 25 1999 1.609 (* Nondetect *) Dec 26 1999 5.000 ppb 1.609 (* Nondetect *) 5.000 ppb 1.609 (* Nondetect *) Dec 27 1999 5.000 ppb 1.609 (* Nondetect *) Dec 28 1999 5.000 ppb 1.609 (* Nondetect *) Dec 29 1999 Dec 30 1999 5.000 ppb 1.609 (* Nondetect *)

Well ID:13MW1 **Summary Statistics**

Observations (N):

Nondetects (%ND):100

Minimum: Maximum: 5.000 ppb 5.000 ppb Ln Minimum: Ln Maximum: 1.609 1.609

Mean:

5.000 ppb

Ln Mean:

1.609

Std. Dev.:

0.000 ppb

Ln Std. Dev.:

0.000

Dec 25 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 26 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 27 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 28 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 29 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 30 1999	5.000 ppb	1.609 (* Nondetect *)

Observations (N): 6 Nondetects (%ND):100

 Minimum:
 5.000 ppb
 Ln Minimum:
 1.609

 Maximum:
 5.000 ppb
 Ln Maximum:
 1.609

 Mean:
 5.000 ppb
 Ln Mean:
 1.609

 Std. Dev.:
 0.000 ppb
 Ln Std. Dev.:
 0.000

Report Printed: 05-10-2005 20:02

Facility:RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:VA Zip:

County:PULASKI

Contact:

Phone:() -

Permit Type: Detection

Constituent: HClEth Hexachloroethane

CAS Number: 67-72-1

MCL: 0.000 ppb ACL: 0.000 ppb Detect Limit: 20.000 ppb

Start Date:Mar 31 1996

End Date: Dec 30 1999

Well ID:13MW1

Sample Date Observation Ln Dec 25 1999 10.000 ppb 2.303 (* Nondetect *) 10.000 ppb 2.303 (* Nondetect *) Dec 26 1999 10.000 ppb Dec 27 1999 2.303 (* Nondetect *) 2.303 (* Nondetect *) Dec 28 1999 10.000 ppb Dec 29 1999 10.000 ppb 2.303 (* Nondetect *) Dec 30 1999 10.000 ppb 2.303 (* Nondetect *)

Well ID:13MW1 Summary Statistics

Observations (N): 6 Nondetects (%ND):100

> Minimum: 10.000 ppb Ln Minimum: 2.303 10.000 ppb Maximum: Ln Maximum: 2.303 Mean: 10.000 ppb Ln Mean: 2.303 Std. Dev.: $0.000 \, \mathrm{ppb}$ Ln Std. Dev.: 0.000

Dec 25 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 26 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 27 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 28 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 29 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 30 1999	10.000 ppb	2.303 (* Nondetect *)

Observations (N): 6 Nondetects (%ND):100

 Minimum:
 10.000 ppb
 Ln Minimum:
 2.303

 Maximum:
 10.000 ppb
 Ln Maximum:
 2.303

 Mean:
 10.000 ppb
 Ln Mean:
 2.303

 Std. Dev.:
 0.000 ppb
 Ln Std. Dev.:
 0.000

Report Printed: 05-10-2005 20:02

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:VA Zip:

County: PULASKI

Contact:

Phone:() -

Permit Type: Detection

Constituent: Perchlor Perchlorate

CAS Number:

MCL:

0.000 ug/l

ACL: Detect Limit: 0.000 ug/l

8.000 ug/1

Start Date: Mar 31 1996 End Date: Dec 30 1999

Well ID:13MW1

Sample Date Observation Ln Dec 25 1999 4.000 ug/1 1.386 (* Nondetect *) Dec 26 1999 1.386 (* Nondetect *) 4.000 ug/l 1.386 (* Nondetect *) 1.386 (* Nondetect *) Dec 27 1999 4.000 ug/l Dec 28 1999 4.000 ug/l Dec 29 1999 4.000 ug/l 1.386 (* Nondetect *) 1.386 (* Nondetect *) Dec 30 1999 4.000 ug/l

Well ID:13MW1 **Summary Statistics**

Observations (N):

Nondetects (%ND):100

Minimum: Maximum: Mean:

4.000 ug/l 4.000 ug/l Ln Minimum: Ln Maximum:

Ln Mean: 1.386

Std. Dev.:

4.000 ug/l $0.000 \, \text{ug/1}$

Ln Std. Dev.:

0.000

1.386

1.386

Well ID:13MW2

Sample Date Observation

Ln

Dec 25 1999	4.000 ug/l	1.386 (* Nondetect *)
Dec 26 1999	4.000 ug/1	1.386 (* Nondetect *)
Dec 27 1999	4.000 ug/1	1.386 (* Nondetect *)
Dec 28 1999	4.000 ug/1	1.386 (* Nondetect *)
Dec 29 1999	4.000 ug/1	1.386 (* Nondetect *)
Dec 30 1999	4.000 ug/l	1.386 (* Nondetect *)

Observations (N): 6 Nondetects (%ND):100

 Minimum:
 4.000 ug/l
 Ln Minimum:
 1.386

 Maximum:
 4.000 ug/l
 Ln Maximum:
 1.386

 Mean:
 4.000 ug/l
 Ln Mean:
 1.386

 Std. Dev.:
 0.000 ug/l
 Ln Std. Dev.:
 0.000

Report Printed: 05-10-2005 17:22

Facility:RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford County:PULASKI

ST:VA Zip:

Contact:

Phone:() -

Permit Type: Detection

Constituent:Sb

Antimony, total

CAS Number: 7440-36-0

MCL:

0.000 ppb

ACL: Detect Limit: 0.000 ppb 10.000 ppb

Start Date:Mar 31 1996 End Date: Dec 30 1999

Sample Date	Observation	Ln
Mar 31 1996	1.500 ppb	0.405 (* Nondetect *)
Jun 30 1996	1.500 ppb	0.405 (* Nondetect *)
Sep 30 1996	1.500 ppb	0.405 (* Nondetect *)
Dec 31 1996	1.500 ppb	0.405 (* Nondetect *)
Mar 31 1997	1.500 ppb	0.405 (* Nondetect *)
Jun 30 1997	1.500 ppb	0.405 (* Nondetect *)
Sep 30 1997	1.500 ppb	0.405 (* Nondetect *)
Dec 31 1997	1.500 ppb	0.405 (* Nondetect *)
Mar 09 1998	1.500 ppb	0.405 (* Nondetect *)
May 14 1998	1.500 ppb	0.405 (* Nondetect *)
Aug 14 1998	1.500 ppb	0.405 (* Nondetect *)
Nov 23 1998	1.500 ppb	0.405 (* Nondetect *)
Mar 13 1999	1.500 ppb	0.405 (* Nondetect *)
May 27 1999	1.500 ppb	0.405 (* Nondetect *)
Jul 27 1999	1.500 ppb	0.405 (* Nondetect *)
Nov 08 1999	1.500 ppb	0.405 (* Nondetect *)
Dec 10 1999	1.500 ppb	0.405 (* Nondetect *)
Dec 11 1999	1.500 ppb	0.405 (* Nondetect *)
Dec 12 1999	1.500 ppb	0.405 (* Nondetect *)
Dec 13 1999	1.500 ppb	0.405 (* Nondetect *)
Dec 14 1999	1.500 ppb	0.405 (* Nondetect *)
Dec 15 1999	1.500 ppb	0.405 (* Nondetect *)
Dec 16 1999	1.500 ppb	0.405 (* Nondetect *)
Dec 17 1999	1.500 ppb	0.405 (* Nondetect *)

Dec 18 1999 5.000 ppb Dec 19 1999 5.000 ppb Dec 20 1999 5.000 ppb Dec 21 1999 5.000 ppb Dec 22 1999 5.000 ppb Dec 23 1999 5.000 ppb Dec 24 1999 5.000 ppb Dec 25 1999 5.000 ppb Dec 26 1999 5.000 ppb Dec 27 1999 5.000 ppb Dec 28 1999 5.000 ppb Dec 29 1999 5.000 ppb Dec 30 1999 5.000 ppb	1.609 (* Nondetect *)
---	---

Observations (N): 37 Nondetects (%ND):100

 Minimum:
 1.500 ppb
 Ln Minimum:
 0.405

 Maximum:
 5.000 ppb
 Ln Maximum:
 1.609

 Mean:
 2.730 ppb
 Ln Mean:
 0.828

 Std. Dev.:
 1.694 ppb
 Ln Std. Dev.:
 0.583

Sample Date	Observation	Ln
Mar 31 1996	1.500 ppb	0.405 (* Nondetect *)
Jun 30 1996	1.500 ppb	0.405 (* Nondetect *)
Sep 30 1996	1.500 ppb	0.405 (* Nondetect *)
Dec 31 1996	6.000 ppb	1.792`
Mar 31 1997	1.500 ppb	0.405 (* Nondetect *)
Jun 30 1997	1.500 ppb	0.405 (* Nondetect *)
Sep 30 1997	1.500 ppb	0.405 (* Nondetect *)
Dec 31 1997	1.500 ppb	0.405 (* Nondetect *)
Mar 09 1998	1.500 ppb	0.405 (* Nondetect *)
May 14 1998	1.500 ppb	0.405 (* Nondetect *)
Aug 14 1998	1.500 ppb	0.405 (* Nondetect *)
Nov 23 1998	1.500 ppb	0.405 (* Nondetect *)
Mar 13 1999	1.500 ppb	0.405 (* Nondetect *)
May 27 1999	1.500 ppb	0.405 (* Nondetect *)
Jul 27 1999	1.500 ppb	0.405 (* Nondetect *)
Nov 08 1999	1.500 ppb	0.405 (* Nondetect *)
Dec 10 1999	1.500 ppb	0.405 (* Nondetect *)
Dec 11 1999	1.500 ppb	0.405 (* Nondetect *)
Dec 12 1999	1.500 ppb	0.405 (* Nondetect *)
Dec 13 1999	1.500 ppb	0.405 (* Nondetect *)
Dec 14 1999	1.500 ppb	0.405 (* Nondetect *)
Dec 15 1999	1.500 ppb	0.405 (* Nondetect *)
Dec 16 1999	1.500 ppb	0.405 (* Nondetect *)
Dec 17 1999	1.500 ppb	0.405 (* Nondetect *)
Dec 18 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 19 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 20 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 21 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 22 1999	5.000 ppb	1.609 (* Nondetect *)

Dec 23 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 24 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 25 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 26 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 27 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 28 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 29 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 30 1999	5.000 ppb	1.609 (* Nondetect *)

Observations (N): 37 Nondetects (%ND): 97

 Minimum:
 1.500 ppb
 Ln Minimum:
 0.405

 Maximum:
 6.000 ppb
 Ln Maximum:
 1.792

 Mean:
 2.851 ppb
 Ln Mean:
 0.866

 Std. Dev.:
 1.763 ppb
 Ln Std. Dev.:
 0.599

Normality Tests

Report Printed: 05-10-2005 15:34

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:VA Zip:

County:PULASKI

Contact:

Phone:() -

Permit Type: Detection

Constituent: Sb Antimony, total

CAS Number: 7440-36-0

MCL: 0.000 ppb

ACL: 0.000 ppb

Detect Limit: 10.000 ppb

Start Date:Mar 31 1996 End Date:Dec 30 1999

Normality Test on Observations for wells listed below:

Well:13MW1 Position:Upgradient Observations:37

 Scale
 Minimum
 Maximum
 Mean
 Std Dev

 Original:
 1.500
 5.000
 2.730
 1.694

 Log:
 0.405
 1.609
 0.828
 0.583

Well:13MW2 Position:Upgradient Observations:37

Scale Minimum Maximum Mean Std Dev Original: 1.500 6.000 2.851 1.763

Log: 0.405 1.792 0.866 0.599

Pooled Statistics

Observations: 74

Original Statistic Log Scale Scale Mean: 2.791 0.847 Std Dev: 1.718 0.587 Skewness: 0.578 0.566 **Kurtosis:** -1.636 -1.673Minimum: 1.500 0.405 Maximum: 6.000 1.792 CV: 0.616 0.693

Shapiro-Francia Statistics

Test 5% Critical 1% Critical

Scale Statistic Value Value Original: 0.6407* 0.9690 0.9560

Log: 0.6351* 0.9690 0.9560

* Indicates statistically significant evidence of non-normality. GRIT/STAT Version 5.0

1. ND = 997. KORD

Nonparametric Prediction Interval

Report Printed May 10,2005

Facility:Haz. Waste Unit 13 - RAAP Parameter:Antimony, total(CAS Number:7440-36-0)

ONE-TAILED UPPER PARAMETRIC PREDICTION INTERVAL

Observations (n):

Conf. Level $(1-\alpha)$:

.%

UL: 6.0 ppb LL: 0.000

1,ND: 99%.

Report Produced by GRITS/STAT 5.01

Page 1

Report Printed: 05-10-2005 17:22

Facility:RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford County:PULASKI ST:VA Zip:

Contact:

Phone:() -

Permit Type: Detection

Constituent: As Arsenic, total

CAS Number: 7440-38-2

MCL:

ACL:

Detect Limit:

0.000 ppb 0.000 ppb 10.000 ppb

Start Date:Mar 31 1996 End Date: Dec 30 1999

Sample Date	Observation	Ln
Mar 31 1996	0.500 ppb	-0.693 (* Nondetect *)
Jun 30 1996	0.500 ppb	-0.693 (* Nondetect *)
Sep 30 1996	0.500 ppb	-0.693 (* Nondetect *)
Dec 31 1996	0.500 ppb	-0.693 (* Nondetect *)
Mar 31 1997	0.500 ppb	-0.693 (* Nondetect *)
Jun 30 1997	0.500 ppb	-0.693 (* Nondetect *)
Sep 30 1997	0.500 ppb	-0.693 (* Nondetect *)
Dec 31 1997	0.500 ppb	-0.693 (* Nondetect *)
Mar 09 1998	0.500 ppb	-0.693 (* Nondetect *)
May 14 1998		-0.693 (* Nondetect *)
Aug 14 1998	0.500 ppb	-0.693 (* Nondetect *)
Nov 23 1998	3.000 ppb	1.099
Mar 13 1999	1.000 ppb	0.000
May 27 1999	0.500 ppb	-0.693 (* Nondetect *)
Jul 27 1999	0.500 ppb	-0.693 (* Nondetect *)
Nov 08 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 10 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 11 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 12 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 13 1999	2.000 ppb	0.693
Dec 14 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 15 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 16 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 17 1999	0.500 ppb	-0.693 (* Nondetect *)

Dec 18 1999 Dec 19 1999 Dec 20 1999 Dec 21 1999 Dec 22 1999 Dec 23 1999 Dec 24 1999 Dec 25 1999 Dec 26 1999 Dec 27 1999 Dec 28 1999 Dec 28 1999	5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb	1.609 (* Nondetect *)
Dec 28 1999 Dec 29 1999 Dec 30 1999	5.000 ppb 5.000 ppb 5.000 ppb	1.609 (* Nondetect *) 1.609 (* Nondetect *) 1.609 (* Nondetect *)

Observations (N): 37 Nondetects (%ND): 92

 Minimum:
 0.500 ppb
 Ln Minimum:
 -0.693

 Maximum:
 5.000 ppb
 Ln Maximum:
 1.609

 Mean:
 2.203 ppb
 Ln Mean:
 0.220

 Std. Dev.:
 2.139 ppb
 Ln Std. Dev.:
 1.101

Mar 31 1996 0.500 ppb -0.693 (* Nondetect *) Jun 30 1996 0.500 ppb -0.693 (* Nondetect *) Sep 30 1996 0.500 ppb -0.693 (* Nondetect *) Dec 31 1996 0.500 ppb -0.693 (* Nondetect *) Mar 31 1997 0.500 ppb -0.693 (* Nondetect *) Jun 30 1997 0.500 ppb -0.693 (* Nondetect *) Sep 30 1997 0.500 ppb -0.693 (* Nondetect *) Mar 09 1998 0.500 ppb -0.693 (* Nondetect *) Mar 1998 0.500 ppb -0.693 (* Nondetect *) May 14 1998 0.500 ppb -0.693 (* Nondetect *) Nov 23 1998 0.500 ppb -0.693 (* Nondetect *) Mar 13 1999 0.500 ppb -0.693 (* Nondetect *) May 27 1999 0.500 ppb -0.693 (* Nondetect *) May 27 1999 1.000 ppb -0.693 (* Nondetect *) Mov 08 1999 0.500 ppb -0.693 (* Nondetect *) Dec 10 1999 0.500 ppb -0.693 (* Nondetect *) Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 0.500 ppb -0.693 (* Nonde	Sample Date	Observation	Ln
Jun 30 1996 0.500 ppb -0.693 (* Nondetect *) Sep 30 1996 0.500 ppb -0.693 (* Nondetect *) Dec 31 1996 0.500 ppb -0.693 (* Nondetect *) Mar 31 1997 0.500 ppb -0.693 (* Nondetect *) Jun 30 1997 0.500 ppb -0.693 (* Nondetect *) Sep 30 1997 0.500 ppb -0.693 (* Nondetect *) Dec 31 1997 0.500 ppb -0.693 (* Nondetect *) Mar 09 1998 0.500 ppb -0.693 (* Nondetect *) May 14 1998 0.500 ppb -0.693 (* Nondetect *) May 14 1998 0.500 ppb -0.693 (* Nondetect *) Nov 23 1998 0.500 ppb -0.693 (* Nondetect *) Mar 13 1999 0.500 ppb -0.693 (* Nondetect *) May 27 1999 0.500 ppb -0.693 (* Nondetect *) Jul 27 1999 0.500 ppb -0.693 (* Nondetect *) Dec 10 1999 0.500 ppb -0.693 (* Nondetect *) Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* No	Mar 31 1996	0.500 ppb	-0.693 (* Nondetect *)
Sep 30 1996 0.500 ppb -0.693 (* Nondetect *) Dec 31 1996 0.500 ppb -0.693 (* Nondetect *) Mar 31 1997 0.500 ppb -0.693 (* Nondetect *) Jun 30 1997 0.500 ppb -0.693 (* Nondetect *) Sep 30 1997 0.500 ppb -0.693 (* Nondetect *) Dec 31 1997 0.500 ppb -0.693 (* Nondetect *) Mar 09 1998 0.500 ppb -0.693 (* Nondetect *) May 14 1998 0.500 ppb -0.693 (* Nondetect *) Mug 14 1998 0.500 ppb -0.693 (* Nondetect *) Nov 23 1998 0.500 ppb -0.693 (* Nondetect *) Nov 23 1998 0.500 ppb -0.693 (* Nondetect *) Mar 13 1999 0.500 ppb -0.693 (* Nondetect *) May 27 1999 0.500 ppb -0.693 (* Nondetect *) Jul 27 1999 0.500 ppb -0.693 (* Nondetect *) Dec 10 1999 0.500 ppb -0.693 (* Nondetect *) Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 14 1999 0.500 ppb -0.693 (* No	Jun 30 1996	0.500 ppb	
Dec 31 1996	Sep 30 1996		-0.693 (* Nondetect *)
Mar 31 1997 0.500 ppb -0.693 (* Nondetect *) Jun 30 1997 0.500 ppb -0.693 (* Nondetect *) Sep 30 1997 0.500 ppb -0.693 (* Nondetect *) Dec 31 1997 0.500 ppb -0.693 (* Nondetect *) Mar 09 1998 0.500 ppb -0.693 (* Nondetect *) May 14 1998 0.500 ppb -0.693 (* Nondetect *) Aug 14 1998 0.500 ppb -0.693 (* Nondetect *) Nov 23 1998 0.500 ppb -0.693 (* Nondetect *) Mar 13 1999 0.500 ppb -0.693 (* Nondetect *) May 27 1999 0.500 ppb -0.693 (* Nondetect *) Jul 27 1999 1.000 ppb -0.693 (* Nondetect *) Jul 27 1999 0.500 ppb -0.693 (* Nondetect *) Dec 10 1999 0.500 ppb -0.693 (* Nondetect *) Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -	Dec 31 1996		
Jun 30 1997 0.500 ppb -0.693 (* Nondetect *) Sep 30 1997 0.500 ppb -0.693 (* Nondetect *) Dec 31 1997 0.500 ppb -0.693 (* Nondetect *) Mar 09 1998 0.500 ppb -0.693 (* Nondetect *) May 14 1998 0.500 ppb -0.693 (* Nondetect *) Aug 14 1998 0.500 ppb -0.693 (* Nondetect *) Nov 23 1998 0.500 ppb -0.693 (* Nondetect *) Mar 13 1999 0.500 ppb -0.693 (* Nondetect *) May 27 1999 0.500 ppb -0.693 (* Nondetect *) Jul 27 1999 1.000 ppb -0.693 (* Nondetect *) Dec 10 1999 0.500 ppb -0.693 (* Nondetect *) Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 0.500 ppb -0.693 (* No	Mar 31 1997		
Dec 31 1997 0.500 ppb -0.693 (* Nondetect *) Mar 09 1998 0.500 ppb -0.693 (* Nondetect *) May 14 1998 0.500 ppb -0.693 (* Nondetect *) Aug 14 1998 0.500 ppb -0.693 (* Nondetect *) Nov 23 1998 0.500 ppb -0.693 (* Nondetect *) Mar 13 1999 0.500 ppb -0.693 (* Nondetect *) May 27 1999 0.500 ppb -0.693 (* Nondetect *) Jul 27 1999 1.000 ppb 0.000 Nov 08 1999 0.500 ppb -0.693 (* Nondetect *) Dec 10 1999 0.500 ppb -0.693 (* Nondetect *) Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb -0.693 (* Nondetect *) Dec 19 1999 5.000 ppb -0.693 (* Nondetect *)	Jun 30 1997		
Dec 31 1997 0.500 ppb -0.693 (* Nondetect *) Mar 09 1998 0.500 ppb -0.693 (* Nondetect *) May 14 1998 0.500 ppb -0.693 (* Nondetect *) Aug 14 1998 0.500 ppb -0.693 (* Nondetect *) Nov 23 1998 0.500 ppb -0.693 (* Nondetect *) Mar 13 1999 0.500 ppb -0.693 (* Nondetect *) May 27 1999 0.500 ppb -0.693 (* Nondetect *) Jul 27 1999 1.000 ppb 0.000 Nov 08 1999 0.500 ppb -0.693 (* Nondetect *) Dec 10 1999 0.500 ppb -0.693 (* Nondetect *) Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb -0.693 (* Nondetect *) Dec 19 1999 5.000 ppb -0.693 (* Nondetect *)	Sep 30 1997	0.500 ppb	-0.693 (* Nondetect *)
Mar 09 1998 0.500 ppb -0.693 (* Nondetect *) May 14 1998 0.500 ppb -0.693 (* Nondetect *) Aug 14 1998 0.500 ppb -0.693 (* Nondetect *) Nov 23 1998 0.500 ppb -0.693 (* Nondetect *) Mar 13 1999 0.500 ppb -0.693 (* Nondetect *) May 27 1999 0.500 ppb -0.693 (* Nondetect *) Jul 27 1999 1.000 ppb 0.000 Nov 08 1999 0.500 ppb -0.693 (* Nondetect *) Dec 10 1999 0.500 ppb -0.693 (* Nondetect *) Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 0.500 ppb -0.693 (* Nondetect *) Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb -0.693 (* Nondetect *) Dec 19 1999 5.000 ppb -0.693 (* Nondetect *) 1.609 (* Nondetect *) -0.693 (* Nondetect *) <	Dec 31 1997	0.500 ppb	-0.693 (* Nondetect *)
Aug 14 1998 0.500 ppb -0.693 (* Nondetect *) Nov 23 1998 0.500 ppb -0.693 (* Nondetect *) Mar 13 1999 0.500 ppb -0.693 (* Nondetect *) May 27 1999 0.500 ppb -0.693 (* Nondetect *) Jul 27 1999 1.000 ppb 0.000 Nov 08 1999 0.500 ppb -0.693 (* Nondetect *) Dec 10 1999 0.500 ppb -0.693 (* Nondetect *) Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 2.000 ppb -0.693 (* Nondetect *) Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *)	Mar 09 1998		
Aug 14 1998 0.500 ppb -0.693 (* Nondetect *) Nov 23 1998 0.500 ppb -0.693 (* Nondetect *) Mar 13 1999 0.500 ppb -0.693 (* Nondetect *) May 27 1999 0.500 ppb -0.693 (* Nondetect *) Jul 27 1999 1.000 ppb 0.000 Nov 08 1999 0.500 ppb -0.693 (* Nondetect *) Dec 10 1999 0.500 ppb -0.693 (* Nondetect *) Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 2.000 ppb -0.693 (* Nondetect *) Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb -0.693 (* Nondetect *) Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *)	May 14 1998	0.500 ppb	-0.693 (* Nondetect *)
Mar 13 1999 0.500 ppb -0.693 (* Nondetect *) May 27 1999 1.000 ppb 0.000 Nov 08 1999 0.500 ppb -0.693 (* Nondetect *) Dec 10 1999 0.500 ppb -0.693 (* Nondetect *) Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 2.000 ppb -0.693 Dec 14 1999 0.500 ppb -0.693 Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb 1.609 (* Nondetect *) Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *)		0.500 ppb	
May 27 1999 0.500 ppb -0.693 (* Nondetect *) Jul 27 1999 1.000 ppb 0.000 Nov 08 1999 0.500 ppb -0.693 (* Nondetect *) Dec 10 1999 0.500 ppb -0.693 (* Nondetect *) Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 2.000 ppb -0.693 (* Nondetect *) Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb 1.609 (* Nondetect *) Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *)	Nov 23 1998	$0.500 \mathrm{ppb}$	-0.693 (* Nondetect *)
May 27 1999 0.500 ppb -0.693 (* Nondetect *) Jul 27 1999 1.000 ppb 0.000 Nov 08 1999 0.500 ppb -0.693 (* Nondetect *) Dec 10 1999 0.500 ppb -0.693 (* Nondetect *) Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 2.000 ppb -0.693 (* Nondetect *) Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb 1.609 (* Nondetect *) Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *)	Mar 13 1999		-0.693 (* Nondetect *)
Nov 08 1999 0.500 ppb -0.693 (* Nondetect *) Dec 10 1999 0.500 ppb -0.693 (* Nondetect *) Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 2.000 ppb 0.693 Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb 1.609 (* Nondetect *) Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *)		0.500 ppb	
Dec 10 1999 0.500 ppb -0.693 (* Nondetect *) Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 2.000 ppb 0.693 Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb 1.609 (* Nondetect *) Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *)		1.000 ppb	0.000
Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 2.000 ppb 0.693 Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb 1.609 (* Nondetect *) Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *)	Nov 08 1999		-0.693 (* Nondetect *)
Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 2.000 ppb 0.693 Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb 1.609 (* Nondetect *) Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *)	Dec 10 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 13 1999 2.000 ppb 0.693 Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb 1.609 (* Nondetect *) Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *)	Dec 11 1999	0.500 ppb	
Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb 1.609 (* Nondetect *) Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *)			-0.693 (* Nondetect *)
Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb 1.609 (* Nondetect *) Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *)		2.000 ppb	
Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb 1.609 (* Nondetect *) Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *)	Dec 14 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb 1.609 (* Nondetect *) Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *)			-0.693 (* Nondetect *)
Dec 18 1999 5.000 ppb 1.609 (* Nondetect *) Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *)			-0.693 (* Nondetect *)
Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *)		0.500 ppb	
Dec 20 1999 5.000 ppb 1.609 (* Nondetect *)			
Tr (m.o.z.	Dec 21 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 22 1999 5.000 ppb 1.609 (* Nondetect *)	Dec 22 1999	5.000 ppb	1.609 (* Nondetect *)

Dec 23 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 24 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 25 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 26 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 27 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 28 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 29 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 30 1999	5.000 ppb	1.609 (* Nondetect *)

Observations (N): 37 Nondetects (%ND): 95

 Minimum:
 0.500 ppb
 Ln Minimum:
 -0.693

 Maximum:
 5.000 ppb
 Ln Maximum:
 1.609

 Mean:
 2.135 ppb
 Ln Mean:
 0.172

 Std. Dev.:
 2.153 ppb
 Ln Std. Dev.:
 1.101

Normality Tests

Report Printed: 05-10-2005 15:45

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford

ST:VA Zip:

County: PULASKI

Contact:

Phone:() -

Permit Type: Detection

Constituent: As

Arsenic, total

CAS Number: 7440-38-2

MCL: ACL:

0.000 ppb

Detect Limit:

0.000 ppb 10.000 ppb

Start Date:Mar 31 1996

End Date: Dec 30 1999

Normality Test on Observations for wells listed below:

Well:13MW1

Position: Upgradient Observations: 37

Scale Original: Minimum 0.500

Maximum

Mean

Log:

-0.693

5.000 1.609

2.203 0.220

2.139 1.101

Well:13MW2

Position: Upgradient Observations: 37

Scale

Minimum 0.500

Maximum 5.000

Mean 2.135

Std Dev

Std Dev

Original: Log:

-0.693

1.609

0.172

2.153 1.101

Pooled Statistics

Observations:

74

Statistic	Original	Log	
	Scale	Scale	
Mean:	2 169	0.19	

Std Dev:

2.131

0.1961.094

Skewness: **Kurtosis:**

0.552-1.649

0.465 -1.725

Minimum: Maximum: 0.500 5.000 -0.6931.609 CV: 0.983 5.572

Shapiro-Francia Statistics

Test 5% Critical 1% Critical Scale Statistic Value Value

 Scale Statistic
 Value
 Value

 Original:
 0.6615*
 0.9690
 0.9560

 Log:
 0.6742*
 0.9690
 0.9560

^{*} Indicates statistically significant evidence of non-normality. GRIT/STAT Version 5.0

Nonparametric Prediction Interval Report Printed May 10,2005

Page 1

Facility: Haz. Waste Unit 13 - RAAP Parameter: Arsenic, total (CAS Number: 7440-38-2)

ONE-TAILED UPPER PARAMETRIC PREDICTION INTERVAL

Observations (n):

Conf. Level $(1-\alpha)$:

.%

UL: 0.500 ppb LL: 0.000

% ND:

100%.

BACKGROUND TO COMPLIANCE WELL COMPARISON

Well:13MW3

Sample Date 12/17/99

Øbservation MD < 1.000 ppb

Report Printed: 05-10-2005 17:23

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:VA Zip: County:PULASKI

Contact:

Phone:() -

Permit Type: Detection

Constituent:Ba Barium, total

CAS Number: 7440-39-3

MCL:

ACL:

0.000 ppb 0.000 ppb 20.000 ppb Detect Limit:

Start Date:Mar 31 1996 End Date:Dec 30 1999

Sample Date	Observation	Ln
Mar 31 1996	87.000 ppb	4.466
Jun 30 1996	105.000 ppb	4.654
Sep 30 1996	90.000 ppb	4.500
Dec 31 1996	88.000 ppb	4.477
Mar 31 1997	127.000 ppb	4.844
Jun 30 1997	129.000 ppb	4.860
Sep 30 1997	154.000 ppb	5.037
Dec 31 1997	126.000 ppb	4.836
Mar 09 1998	117.000 ppb	4.762
May 14 1998	98.000 ppb	4.585
Aug 14 1998	107.000 ppb	4.673
Nov 23 1998	255.000 ppb	5.541
Mar 13 1999	178.000 ppb	5.182
May 27 1999	85.000 ppb	4.443
Jul 27 1999	103.000 ppb	4.635
Nov 08 1999	128.000 ppb	4.852
Dec 10 1999	96.000 ppb	4.564
Dec 11 1999	91.000 ppb	4.511
Dec 12 1999	81.000 ppb	4.394
Dec 13 1999	111.000 ppb	4.710
Dec 14 1999	115.000 ppb	4.745
Dec 15 1999	81.800 ppb	4.404
Dec 16 1999	112.000 ppb	4.718
Dec 17 1999	132.000 ppb	4.883

Dec 18 1999	127.000 ppb	4.844
Dec 19 1999	107.000 ppb	4.673
Dec 20 1999	132.000 ppb	4.883
Dec 21 1999	143.000 ppb	4.963
Dec 22 1999	110.000 ppb	4.700
Dec 23 1999	78.000 ppb	4.357
Dec 24 1999	89.500 ppb	4.494
Dec 25 1999	120.000 ppb	4.787
Dec 26 1999	98.800 ppb	4.593
Dec 27 1999	96.300 ppb	4.567
Dec 28 1999	97.100 ppb	4.576
Dec 29 1999	106.000 ppb	4.663
Dec 30 1999	101.000 ppb	4.615

Observations (N): 37 Nondetects (%ND): 0

 Minimum:
 78.000 ppb
 Ln Minimum:
 4.357

 Maximum:
 255.000 ppb
 Ln Maximum:
 5.541

 Mean:
 113.581 ppb
 Ln Mean:
 4.703

 Std. Dev.:
 32.212 ppb
 Ln Std. Dev.:
 0.235

Sample Date	Observation	Ln
Mar 31 1996	134.000 ppb	4.898
Jun 30 1996	139.000 ppb	4.934
Sep 30 1996	128.000 ppb	4.852
Dec 31 1996	110.000 ppb	4.700
Mar 31 1997	137.000 ppb	4.920
Jun 30 1997	125.000 ppb	4.828
Sep 30 1997	140.000 ppb	4.942
Dec 31 1997	141.000 ppb	4.949
Mar 09 1998	220.000 ppb	5.394
May 14 1998	159.000 ppb	5.069
Aug 14 1998	151.000 ppb	5.017
Nov 23 1998	172.000 ppb	5.147
Mar 13 1999	168.000 ppb	5.124
May 27 1999	153.000 ppb	5.030
Jul 27 1999	124.000 ppb	4.820
Nov 08 1999	146.000 ppb	4.984
Dec 10 1999	138.000 ppb	4.927
Dec 11 1999	145.000 ppb	4.977
Dec 12 1999	130.000 ppb	4.868
Dec 13 1999	135.000 ppb	4.905
Dec 14 1999	131.000 ppb	4.875
Dec 15 1999	147.000 ppb	4.990
Dec 16 1999	148.000 ppb	4.997
Dec 17 1999	155.000 ppb	5.043
Dec 18 1999	128.000 ppb	4.852
Dec 19 1999	148.000 ppb	4.997
Dec 20 1999	148.000 ppb	4.997
Dec 21 1999	142.000 ppb	4.956
Dec 22 1999	153.000 ppb	5.030

Dec 23 1999	172.000 ppb	5.147
Dec 24 1999	168.000 ppb	5.124
Dec 25 1999	152.000 ppb	5.024
Dec 26 1999	174.000 ppb	5.159
Dec 27 1999	168.000 ppb	5.124
Dec 28 1999	154.000 ppb	5.037
Dec 29 1999	171.000 ppb	5.142
Dec 30 1999	180.000 ppb	5.193

Observations (N): 37 Nondetects (%ND): 0

 Minimum:
 110.000 ppb
 Ln Minimum:
 4.700

 Maximum:
 220.000 ppb
 Ln Maximum:
 5.394

 Mean:
 149.568 ppb
 Ln Mean:
 4.999

 Std. Dev.:
 20.240 ppb
 Ln Std. Dev.:
 0.130

Normality Tests

Report Printed: 05-10-2005 15:54

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford

ST:VA Zip:

County: PULASKI

Contact:

Phone:() -

Permit Type: Detection

Constituent:Ba

Barium, total

CAS Number: 7440-39-3

MCL:

0.000 ppb

ACL:

0.000 ppb

Detect Limit:

20.000 ppb

Start Date: Mar 31 1996 End Date: Dec 30 1999

Normality Test on Observations for wells listed below:

Well:13MW1

Position: Upgradient Observations: 37

Scale Original: Minimum 78.000

Maximum 255.000

Std Dev Mean

5.541

113.581

32.212

Log:

4.357

4.703

0.235

Well:13MW2 Position: Upgradient Observations: 37

Scale

Minimum 110.000

Maximum 220.000

Mean 149.568

Std Dev

Original: Log:

4.700

5.394

4.999

20.240 0.130

Pooled Statistics

Observations:

74

Statistic

Original Scale

Log Scale

Mean: Std Dev: 131.574

4.851

Skewness:

32.278

0.241

Kurtosis:

0.845 1.800

0.030 -0.118

Minimum: Maximum:

78.000 255.000 4.357 5.541 CV: 0.245 0.050

Shapiro-Francia Statistics

Test 5% Critical 1% Critical Scale Statistic Value Value Original: 0.9407* Log: 0.9794 0.9690 0.9560 0.9560 0.9690

^{*} Indicates statistically significant evidence of non-normality. GRIT/STAT Version 5.0

Parametric Prediction Interval Report Printed May 10,2005

Page 1

Facility: Haz. Waste Unit 13 - RAAP

Parameter: Barium, total(CAS Number: 7440-39-3)

ONE-TAILED UPPER PARAMETRIC PREDICTION INTERVAL

Observations (n): 74 Shapiro-Francia (W): 0.9794 Critical W, $\alpha = 0.01$: 0.9560 Mean: 4.851 ln(ppb) Std Dev: $0.241 \ln(ppb)$ DF: 73 Conf. Level $(1-\alpha)$: 0.9500 Future Samples (k): 5 $t - 1 - \alpha - :$ $k - 1 - \alpha - :$ 2.3785 Kappa: 2.3945 UL: 227.572 ppb LL: 0.000

1,ND: 0 /.

Report Printed: 05-10-2005 17:23

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford County:PULASKI ST:VA Zip:

Contact:

Phone:() -

Permit Type:Detection

Constituent:Cr Chromium, total

CAS Number: 7440-47-3

MCL:

ACL:

0.000 ppb 0.000 ppb 10.000 ppb Detect Limit:

Start Date:Mar 31 1996 End Date:Dec 30 1999

Sample Date	Observation	Ln
Mar 31 1996	11.000 ppb	2.398
Jun 30 1996	13.000 ppb	2.565
Sep 30 1996	56.000 ppb	4.025
Dec 31 1996	20.000 ppb	2.996
Mar 31 1997	22.000 ppb	3.091
Jun 30 1997	19.000 ppb	2.944
Sep 30 1997	40.000 ppb	3.689
Dec 31 1997	23.000 ppb	3.135
Mar 09 1998	55.000 ppb	4.007
May 14 1998		1.792
Aug 14 1998	9.000 ppb	2.197
Nov 23 1998	112.000 ppb	4.718
Mar 13 1999	108.000 ppb	4.682
May 27 1999		1.099
Jul 27 1999	2.000 ppb	0.693
Nov 08 1999	15.000 ppb	2.708
Dec 10 1999	2.000 ppb	0.693
Dec 11 1999	2.000 ppb	0.693
Dec 12 1999	2.000 ppb	0.693
Dec 13 1999	4.000 ppb	1.386
Dec 14 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 15 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 16 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 17 1999	0.500 ppb	-0.693 (* Nondetect *)

Dec 18 1999 Dec 19 1999 Dec 20 1999 Dec 21 1999 Dec 22 1999 Dec 23 1999 Dec 24 1999 Dec 25 1999 Dec 26 1999 Dec 27 1999 Dec 28 1999 Dec 29 1999	5.000 ppb 5.000 ppb	1.609 (* Nondetect *)
Dec 28 1999 Dec 29 1999 Dec 30 1999	5.000 ppb 5.000 ppb 5.000 ppb	1.609 (* Nondetect *) 1.609 (* Nondetect *) 1.609 (* Nondetect *)

Observations (N): 37 Nondetects (%ND): 46

 Minimum:
 0.500 ppb
 Ln Minimum:
 -0.693

 Maximum:
 112.000 ppb
 Ln Maximum:
 4.718

 Mean:
 15.973 ppb
 Ln Mean:
 1.847

 Std. Dev.:
 26.511 ppb
 Ln Std. Dev.:
 1.386

Sample Date	Observation	Ln
Mar 31 1996	13.000 ppb	2.565
Jun 30 1996	10.000 ppb	2.303
Sep 30 1996	11.000 ppb	2.398
Dec 31 1996	14.000 ppb	2.639
Mar 31 1997	10.000 ppb	2.303
Jun 30 1997	10.000 ppb	2.303
Sep 30 1997	19.000 ppb	2.944
Dec 31 1997	12.000 ppb	2.485
Mar 09 1998	12.000 ppb	2.485
May 14 1998	7.000 ppb	1.946
Aug 14 1998	17.000 ppb	2.833
Nov 23 1998	20.000 ppb	2.996
Mar 13 1999	9.000 ppb	2.197
May 27 1999	6.000 ppb	1.792
Jul 27 1999	6.000 ppb	1.792
Nov 08 1999	6.000 ppb	1.792
Dec 10 1999	4.000 ppb	1.386
Dec 11 1999	6.000 ppb	1.792
Dec 12 1999	2.000 ppb	0.693
Dec 13 1999	5.000 ppb	1.609
Dec 14 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 15 1999	10.700 ppb	2.370
Dec 16 1999	9.210 ppb	2.220
Dec 17 1999	7.020 ppb	1.949
Dec 18 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 19 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 20 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 21 1999	57.600 ppb	4.054
Dec 22 1999	10.300 ppb	2.332

Dec 23 1999	6.300 ppb	1.841
Dec 24 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 25 1999	6.000 ppb	1.792
Dec 26 1999	7.600 ppb	2.028
Dec 27 1999	5.500 ppb	1.705
Dec 28 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 29 1999	7.400 ppb	2.001
Dec 30 1999	7.600 ppb	2.028

Observations (N): 37 Nondetects (%ND): 16

 Minimum:
 0.500 ppb
 Ln Minimum:
 -0.693

 Maximum:
 57.600 ppb
 Ln Maximum:
 4.054

 Mean:
 9.722 ppb
 Ln Mean:
 2.025

 Std. Dev.:
 9.158 ppb
 Ln Std. Dev.:
 0.733

Normality Tests

Report Printed: 05-10-2005 15:57

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:VA Zip: County:PULASKI

Contact:

Phone:() -

Permit Type: Detection

Constituent: Cr Chromium, total

CAS Number: 7440-47-3

MCL: 0.000 ppb

ACL: 0.000 ppb Detect Limit: 10.000 ppb

Start Date:Mar 31 1996 End Date:Dec 30 1999

Normality Test on Observations for wells listed below:

Well:13MW1 Position:Upgradient Observations:37

 Scale
 Minimum
 Maximum
 Mean
 Std Dev

 Original:
 0.500
 112.000
 15.973
 26.511

 Log:
 -0.693
 4.718
 1.847
 1.386

Well:13MW2 Position:Upgradient Observations:37

 Scale
 Minimum
 Maximum
 Mean
 Std Dev

 Original:
 0.500
 57.600
 9.722
 9.158

 Log:
 -0.693
 4.054
 2.025
 0.733

Pooled Statistics

Observations: 74

Statistic Original Log Scale Scale Mean: 12.848 1.936 Std Dev: 19.947 1.105 Skewness: 3.603* -0.168**Kurtosis:** 13.679 1.161 Minimum: 0.500 -0.693Maximum: 112.000 4.718 CV: 1.553 0.570

Shapiro-Francia Statistics

Test 5% Critical 1% Critical Scale Statistic Value Value Original: 0.4961* Log: 0.9189* 0.9690 0.9560 0.9690 0.9560

^{*} Indicates statistically significant evidence of non-normality. GRIT/STAT Version 5.0

Nonparametric Prediction Interval

Report Printed May 10,2005

Facility:Haz. Waste Unit 13 - RAAP Parameter:Chromium, total(CAS Number:7440-47-3)

ONE-TAILED UPPER PARAMETRIC PREDICTION INTERVAL

Observations (n):

Conf. Level $(1-\alpha)$:

.%

UL: 0.000 ppb

YND: 317.

Page 1

Report Printed: 05-10-2005 17:23

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford County:PULASKI ST:VA Zip:

Contact: Phone:() -

Permit Type: Detection

Constituent:Pb Lead, total

CAS Number: 7439-92-1 0.000 ppb 0.000 ppb 10.000 ppb MCL: ACL:

Detect Limit:

Start Date:Mar 31 1996 End Date:Dec 30 1999

Sample Date	Observation	Ln
Mar 31 1996	1.000 ppb	0.000
Jun 30 1996	1.000 ppb	0.000
Sep 30 1996	2.000 ppb	0.693
Dec 31 1996	4.000 ppb	1.386
Mar 31 1997	14.000 ppb	2.639
Jun 30 1997	9.000 ppb	2.197
Sep 30 1997	8.000 ppb	2.079
Dec 31 1997	5.000 ppb	1.609
Mar 09 1998	2.000 ppb	0.693
May 14 1998	0.500 ppb	-0.693 (* Nondetect *)
Aug 14 1998	0.500 ppb	-0.693 (* Nondetect *)
Nov 23 1998	6.000 ppb	1.792
Mar 13 1999	6.000 ppb	1.792
May 27 1999	0.500 ppb	-0.693 (* Nondetect *)
Jul 27 1999	0.500 ppb	-0.693 (* Nondetect *)
Nov 08 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 10 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 11 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 12 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 13 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 14 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 15 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 16 1999	3.200 ppb	1.163
Dec 17 1999	0.500 ppb	-0.693 (* Nondetect *)

Dec 18 1999 Dec 19 1999 Dec 20 1999 Dec 21 1999 Dec 22 1999 Dec 23 1999 Dec 24 1999 Dec 25 1999 Dec 26 1999 Dec 27 1999 Dec 28 1999	5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb	1.609 (* Nondetect *)

Observations (N): 37 Nondetects (%ND): 68

 Minimum:
 0.500 ppb
 Ln Minimum:
 -0.693

 Maximum:
 14.000 ppb
 Ln Maximum:
 2.639

 Mean:
 3.573 ppb
 Ln Mean:
 0.774

 Std. Dev.:
 3.027 ppb
 Ln Std. Dev.:
 1.138

Mar 31 1996 2.000 ppb 0.693 Jun 30 1996 4.000 ppb 1.386 Sep 30 1996 2.000 ppb 0.693 Dec 31 1996 6.000 ppb 1.792 Mar 31 1997 0.500 ppb -0.693 (* Nondetect *) Jun 30 1997 7.000 ppb 1.946 Sep 30 1997 6.000 ppb 1.609 Mar 09 1998 3.000 ppb 1.609 Mar 1998 0.500 ppb -0.693 (* Nondetect *) Aug 14 1998 0.500 ppb -0.693 (* Nondetect *) Nov 23 1998 1.000 ppb 0.693 Mar 13 1999 2.000 ppb 0.693 May 27 1999 0.500 ppb -0.693 (* Nondetect *) Jul 27 1999 0.500 ppb -0.693 (* Nondetect *) Dec 10 1999 0.500 ppb -0.693 (* Nondetect *) Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 0.500 ppb -0.693 (* Nondetect *) Dec 14 1999 0.500 ppb -0.693 (* Nondetect *)	Sample Date	Observation	Ln
Jun 30 1996 4.000 ppb 1.386 Sep 30 1996 2.000 ppb 0.693 Dec 31 1997 0.500 ppb 1.792 Mar 31 1997 7.000 ppb 1.946 Sep 30 1997 6.000 ppb 1.946 Sep 30 1997 5.000 ppb 1.609 Mar 09 1998 3.000 ppb 1.099 May 14 1998 0.500 ppb -0.693 (* Nondetect *) Aug 14 1998 0.500 ppb -0.693 (* Nondetect *) Nov 23 1998 1.000 ppb 0.693 May 27 1999 0.500 ppb -0.693 (* Nondetect *) Jul 27 1999 0.500 ppb -0.693 (* Nondetect *) Jul 27 1999 0.500 ppb -0.693 (* Nondetect *) Dec 10 1999 0.500 ppb -0.693 (* Nondetect *) Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 0.500 ppb -0.693 (* Nondetect *) Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) <			0.693
Dec 31 1996 6.000 ppb 1.792 Mar 31 1997 0.500 ppb -0.693 (* Nondetect *) Jun 30 1997 7.000 ppb 1.946 Sep 30 1997 6.000 ppb 1.792 Dec 31 1997 5.000 ppb 1.609 Mar 09 1998 3.000 ppb 1.099 May 14 1998 0.500 ppb -0.693 (* Nondetect *) Aug 14 1998 0.500 ppb -0.693 (* Nondetect *) Nov 23 1998 1.000 ppb 0.693 Mar 13 1999 2.000 ppb -0.693 May 27 1999 0.500 ppb -0.693 Nov 08 1999 0.500 ppb -0.693 (* Nondetect *) Dec 10 1999 0.500 ppb -0.693 (* Nondetect *) Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 0.500 ppb -0.693 (* Nondetect *) Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *)	Jun 30 1996		1.386
Dec 31 1996 6.000 ppb 1.792 Mar 31 1997 0.500 ppb -0.693 (* Nondetect *) Jun 30 1997 7.000 ppb 1.946 Sep 30 1997 6.000 ppb 1.792 Dec 31 1997 5.000 ppb 1.609 Mar 09 1998 3.000 ppb 1.099 May 14 1998 0.500 ppb -0.693 (* Nondetect *) Aug 14 1998 0.500 ppb -0.693 (* Nondetect *) Nov 23 1998 1.000 ppb 0.693 Mar 13 1999 2.000 ppb -0.693 May 27 1999 0.500 ppb -0.693 Nov 08 1999 0.500 ppb -0.693 (* Nondetect *) Dec 10 1999 0.500 ppb -0.693 (* Nondetect *) Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 0.500 ppb -0.693 (* Nondetect *) Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *)	Sep 30 1996		0.693
Jun 30 1997 7.000 ppb 1.946 Sep 30 1997 6.000 ppb 1.792 Dec 31 1997 5.000 ppb 1.609 Mar 09 1998 3.000 ppb 1.099 May 14 1998 0.500 ppb -0.693 (* Nondetect *) Aug 14 1998 0.500 ppb -0.693 (* Nondetect *) Nov 23 1998 1.000 ppb 0.693 Mar 13 1999 2.000 ppb -0.693 (* Nondetect *) Jul 27 1999 0.500 ppb -0.693 (* Nondetect *) Dec 10 1999 0.500 ppb -0.693 (* Nondetect *) Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 0.500 ppb -0.693 (* Nondetect *) Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb -0.693 (* Nondetect *) Dec 20 1999 5.	Dec 31 1996		1.792
Sep 30 1997 6.000 ppb 1.792 Dec 31 1997 5.000 ppb 1.609 Mar 09 1998 3.000 ppb 1.099 May 14 1998 0.500 ppb -0.693 (* Nondetect *) Aug 14 1998 0.500 ppb -0.693 (* Nondetect *) Nov 23 1998 1.000 ppb 0.693 May 27 1999 2.000 ppb -0.693 (* Nondetect *) Jul 27 1999 0.500 ppb -0.693 (* Nondetect *) Dec 10 1999 0.500 ppb -0.693 (* Nondetect *) Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 0.500 ppb -0.693 (* Nondetect *) Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb -0.693 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 </td <td>Mar 31 1997</td> <td>0.500 ppb</td> <td>-0.693 (* Nondetect *)</td>	Mar 31 1997	0.500 ppb	-0.693 (* Nondetect *)
Dec 31 1997 5.000 ppb 1.609 Mar 09 1998 3.000 ppb 1.099 May 14 1998 0.500 ppb -0.693 (* Nondetect *) Aug 14 1998 0.500 ppb -0.693 (* Nondetect *) Nov 23 1998 1.000 ppb 0.000 Mar 13 1999 2.000 ppb 0.693 May 27 1999 0.500 ppb -0.693 (* Nondetect *) Jul 27 1999 2.000 ppb -0.693 Nov 08 1999 0.500 ppb -0.693 (* Nondetect *) Dec 10 1999 0.500 ppb -0.693 (* Nondetect *) Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 0.500 ppb -0.693 (* Nondetect *) Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb -0.693 (* Nondetect *) Dec 20 1999 5.000 pp	Jun 30 1997	7.000 ppb	1.946
Mar 09 1998 3.000 ppb 1.099 May 14 1998 0.500 ppb -0.693 (* Nondetect *) Aug 14 1998 0.500 ppb -0.693 (* Nondetect *) Nov 23 1998 1.000 ppb 0.000 Mar 13 1999 2.000 ppb 0.693 May 27 1999 0.500 ppb -0.693 (* Nondetect *) Jul 27 1999 0.500 ppb -0.693 (* Nondetect *) Dec 10 1999 0.500 ppb -0.693 (* Nondetect *) Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 0.500 ppb -0.693 (* Nondetect *) Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb -0.693 (* Nondetect *) Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 5.000 ppb 1.609 (* Nondetect *) <td>Sep 30 1997</td> <td></td> <td>1.792</td>	Sep 30 1997		1.792
May 14 1998 0.500 ppb -0.693 (* Nondetect *) Aug 14 1998 0.500 ppb -0.693 (* Nondetect *) Nov 23 1998 1.000 ppb 0.000 Mar 13 1999 2.000 ppb 0.693 May 27 1999 0.500 ppb -0.693 (* Nondetect *) Jul 27 1999 0.500 ppb -0.693 (* Nondetect *) Dec 10 1999 0.500 ppb -0.693 (* Nondetect *) Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 0.500 ppb -0.693 (* Nondetect *) Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb -0.693 (* Nondetect *) Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 5.000 ppb 1.609 (* Nondetect *)		5.000 ppb	1.609
May 14 1998 0.500 ppb -0.693 (* Nondetect *) Aug 14 1998 0.500 ppb -0.693 (* Nondetect *) Nov 23 1998 1.000 ppb 0.000 Mar 13 1999 2.000 ppb 0.693 May 27 1999 0.500 ppb -0.693 (* Nondetect *) Jul 27 1999 0.500 ppb -0.693 (* Nondetect *) Dec 10 1999 0.500 ppb -0.693 (* Nondetect *) Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 0.500 ppb -0.693 (* Nondetect *) Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb -0.693 (* Nondetect *) Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 5.000 ppb 1.609 (* Nondetect *)	Mar 09 1998	3.000 ppb	1.099
Nov 23 1998 1.000 ppb 0.000 Mar 13 1999 2.000 ppb 0.693 May 27 1999 0.500 ppb -0.693 (* Nondetect *) Jul 27 1999 2.000 ppb 0.693 Nov 08 1999 0.500 ppb -0.693 (* Nondetect *) Dec 10 1999 0.500 ppb -0.693 (* Nondetect *) Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 0.500 ppb -0.693 (* Nondetect *) Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb 1.609 (* Nondetect *) Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 5.000 ppb 1.609 (* Nondetect *)			-0.693 (* Nondetect *)
Mar 13 1999 2.000 ppb 0.693 May 27 1999 0.500 ppb -0.693 (* Nondetect *) Jul 27 1999 2.000 ppb 0.693 Nov 08 1999 0.500 ppb -0.693 (* Nondetect *) Dec 10 1999 0.500 ppb -0.693 (* Nondetect *) Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 0.500 ppb -0.693 (* Nondetect *) Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb -0.693 (* Nondetect *) Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 5.000 ppb 1.609 (* Nondetect *)			-0.693 (* Nondetect *)
May 27 1999 0.500 ppb -0.693 (* Nondetect *) Jul 27 1999 2.000 ppb 0.693 Nov 08 1999 0.500 ppb -0.693 (* Nondetect *) Dec 10 1999 0.500 ppb -0.693 (* Nondetect *) Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 0.500 ppb -0.693 (* Nondetect *) Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb 1.609 (* Nondetect *) Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 5.000 ppb 1.609 (* Nondetect *)		1.000 ppb	0.000
Jul 27 1999 2.000 ppb 0.693 Nov 08 1999 0.500 ppb -0.693 (* Nondetect *) Dec 10 1999 0.500 ppb -0.693 (* Nondetect *) Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 0.500 ppb -0.693 (* Nondetect *) Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb 1.609 (* Nondetect *) Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 5.000 ppb 1.609 (* Nondetect *)	Mar 13 1999	2.000 ppb	0.693
Nov 08 1999 0.500 ppb -0.693 (* Nondetect *) Dec 10 1999 0.500 ppb -0.693 (* Nondetect *) Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 0.500 ppb -0.693 (* Nondetect *) Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb 1.609 (* Nondetect *) Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 5.000 ppb 1.609 (* Nondetect *)		0.500 ppb	-0.693 (* Nondetect *)
Dec 10 1999 0.500 ppb -0.693 (* Nondetect *) Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 0.500 ppb -0.693 (* Nondetect *) Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb 1.609 (* Nondetect *) Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 5.000 ppb 1.609 (* Nondetect *)	Jul 27 1999		0.693
Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 0.500 ppb -0.693 (* Nondetect *) Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb 1.609 (* Nondetect *) Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 5.000 ppb 1.609 (* Nondetect *)		0.500 ppb	-0.693 (* Nondetect *)
Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 0.500 ppb -0.693 (* Nondetect *) Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb 1.609 (* Nondetect *) Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 5.000 ppb 1.609 (* Nondetect *)	Dec 10 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 13 1999 0.500 ppb -0.693 (* Nondetect *) Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb 1.609 (* Nondetect *) Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 5.000 ppb 1.609 (* Nondetect *)		0.500 ppb	-0.693 (* Nondetect *)
Dec 13 1999 0.500 ppb -0.693 (* Nondetect *) Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb 1.609 (* Nondetect *) Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 5.000 ppb 1.609 (* Nondetect *)		0.500 ppb	-0.693 (* Nondetect *)
Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb 1.609 (* Nondetect *) Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 5.000 ppb 1.609 (* Nondetect *)	Dec 13 1999	0.500 ppb	
Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb 1.609 (* Nondetect *) Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 5.000 ppb 1.609 (* Nondetect *)	Dec 14 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb 1.609 (* Nondetect *) Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 5.000 ppb 1.609 (* Nondetect *) 1.609 (* Nondetect *) 1.609 (* Nondetect *)	Dec 15 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb 1.609 (* Nondetect *) Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 5.000 ppb 1.609 (* Nondetect *) 1.609 (* Nondetect *) 1.609 (* Nondetect *)	Dec 16 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 5.000 ppb 1.609 (* Nondetect *)	Dec 17 1999	0.500 ppb	
Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 5.000 ppb 1.609 (* Nondetect *)		5.000 ppb	1.609 (* Nondetect *)
Dec 21 1999 5.000 ppb 1.609 (* Nondetect *)			
Dec 21 1999 5.000 ppb 1.609 (* Nondetect *)		5.000 ppb	
22 1999 3.000 pp0 1.009 (* Nondetect *)	Dec 22 1999	5.000 ppb	1.609 (* Nondetect *)

5.000 ppb	1.609 (* Nondetect *)
5.000 ppb	1.609 (* Nondetect *)
5.000 ppb	1.609 (* Nondetect *)
5.000 ppb	1.609 (* Nondetect *)
5.000 ppb	1.609 (* Nondetect *)
5.000 ppb	1.609 (* Nondetect *)
5.000 ppb	1.609 (* Nondetect *)
5.000 ppb	1.609 (* Nondetect *)
	5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb

Observations (N): 37 Nondetects (%ND): 70

 Minimum:
 0.500 ppb
 Ln Minimum:
 -0.693

 Maximum:
 7.000 ppb
 Ln Maximum:
 1.946

 Mean:
 3.014 ppb
 Ln Mean:
 0.657

 Std. Dev.:
 2.238 ppb
 Ln Std. Dev.:
 1.078

Normality Tests

Report Printed: 05-10-2005 16:25

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:VA Zip: County: PULASKI

Contact:

Phone:() -

Permit Type: Detection

Constituent:Pb

Lead, total

CAS Number: 7439-92-1

MCL:

0.000 ppb

ACL:

0.000 ppb

Detect Limit:

10.000 ppb

Start Date:Mar 31 1996

End Date: Dec 30 1999

Normality Test on Observations for wells listed below:

Well:13MW1 Position: Upgradient Observations: 37

Scale Minimum Maximum Std Dev Mean 0.500 3.573 3.027 Original: 14.000

-0.693 Log: 2.639 0.774 1.138

Well:13MW2 Position: Upgradient Observations: 37

Scale Minimum Maximum Mean Std Dev Original: 0.500 7.000 3.014 2.238

-0.693 1.946 Log: 0.657 1.078

Pooled Statistics

Observations: 74

Statistic Original Log Scale Scale

Mean: 3.293 0.716 Std Dev: 2.658 1.102 Skewness: 0.876-0.314Kurtosis: 1.714 -1.614Minimum: 0.500 -0.693Maximum: 14.000 2.639 CV: 0.807 1.540

Shapiro-Francia Statistics

Test 5% Critical 1% Critical Scale Statistic Value Value Original: 0.8098* Log: 0.7963* 0.9690 0.9560 0.9690 0.9560

^{*} Indicates statistically significant evidence of non-normality. GRIT/STAT Version 5.0

Nonparametric Prediction Interval Report Printed May 10,2005

Page 1

Facility:Haz. Waste Unit 13 - RAAP Parameter:Lead, total(CAS Number:7439-92-1)

ONE-TAILED UPPER PARAMETRIC PREDICTION INTERVAL

Observations (n):

74

Conf. Level $(1-\alpha)$:

100.000%

UL: 4.0 ppb LL: 0.000

YND: 69 %.

Report Printed: 05-10-2005 17:23

Facility:RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford County:PULASKI ST:VA Zip:

Contact:

Phone:() -

Permit Type: Detection

Mercury Constituent:Hg

CAS Number: 7439-97-6

MCL:

ACL:

0.000 ppb 0.000 ppb 4.000 ppb Detect Limit:

Start Date:Mar 31 1996 End Date:Dec 30 1999

Sample Date	Observation	Ln
Mar 31 1996	0.100 ppb	-2.303 (* Nondetect *)
Jun 30 1996	0.100 ppb	-2.303 (* Nondetect *)
Sep 30 1996	0.100 ppb	-2.303 (* Nondetect *)
Dec 31 1996	0.100 ppb	-2.303 (* Nondetect *)
Mar 31 1997	0.100 ppb	-2.303 (* Nondetect *)
Jun 30 1997	0.100 ppb	-2.303 (* Nondetect *)
Sep 30 1997	0.100 ppb	-2.303 (* Nondetect *)
Dec 31 1997	0.100 ppb	-2.303 (* Nondetect *)
Mar 09 1998	0.100 ppb	-2.303 (* Nondetect *)
May 14 1998		-2.303 (* Nondetect *)
Aug 14 1998	0.100 ppb	-2.303 (* Nondetect *)
Nov 23 1998	0.100 ppb	-2.303 (* Nondetect *)
Mar 13 1999	0.100 ppb	-2.303 (* Nondetect *)
May 27 1999		-2.303 (* Nondetect *)
Jul 27 1999	0.100 ppb	-2.303 (* Nondetect *)
Nov 08 1999	$0.100 \mathrm{ppb}$	-2.303 (* Nondetect *)
Dec 10 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 11 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 12 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 13 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 14 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 15 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 16 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 17 1999	0.100 ppb	-2.303 (* Nondetect *)

Dec 18 1999 Dec 19 1999 Dec 20 1999 Dec 21 1999 Dec 22 1999 Dec 23 1999 Dec 24 1999 Dec 25 1999 Dec 26 1999 Dec 27 1999 Dec 28 1999 Dec 29 1999	2.000 ppb 2.000 ppb	0.693 (* Nondetect *)
	2.000 ppb 2.000 ppb 2.000 ppb	0.693 (* Nondetect *) 0.693 (* Nondetect *) 0.693 (* Nondetect *)

Observations (N): 37 Nondetects (%ND):100

 Minimum:
 0.100 ppb
 Ln Minimum:
 -2.303

 Maximum:
 2.000 ppb
 Ln Maximum:
 0.693

 Mean:
 0.768 ppb
 Ln Mean:
 -1.250

 Std. Dev.:
 0.920 ppb
 Ln Std. Dev.:
 1.450

Sample Date	Observation	Ln
Mar 31 1996	0.100 ppb	-2.303 (* Nondetect *)
Jun 30 1996	0.100 ppb	-2.303 (* Nondetect *)
Sep 30 1996	0.100 ppb	-2.303 (* Nondetect *)
Dec 31 1996	0.100 ppb	-2.303 (* Nondetect *)
Mar 31 1997	0.100 ppb	-2.303 (* Nondetect *)
Jun 30 1997	0.100 ppb	-2.303 (* Nondetect *)
Sep 30 1997	0.100 ppb	-2.303 (* Nondetect *)
Dec 31 1997	0.100 ppb	-2.303 (* Nondetect *)
Mar 09 1998	0.100 ppb	-2.303 (* Nondetect *)
May 14 1998	0.100 ppb	-2.303 (* Nondetect *)
Aug 14 1998	0.100 ppb	-2.303 (* Nondetect *)
Nov 23 1998	0.100 ppb	-2.303 (* Nondetect *)
Mar 13 1999	0.100 ppb	-2.303 (* Nondetect *)
May 27 1999	0.100 ppb	-2.303 (* Nondetect *)
Jul 27 1999	0.100 ppb	-2.303 (* Nondetect *)
Nov 08 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 10 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 11 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 12 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 13 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 14 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 15 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 16 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 17 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 18 1999	2.000 ppb	0.693 (* Nondetect *)
Dec 19 1999	2.000 ppb	0.693 (* Nondetect *)
Dec 20 1999	2.520 ppb	0.924
Dec 21 1999	2.000 ppb	0.693 (* Nondetect *)
Dec 22 1999	2.000 ppb	0.693 (* Nondetect *)

Dec 23 1999	2.000 ppb	0.693 (* Nondetect *)
Dec 24 1999	2.000 ppb	0.693 (* Nondetect *)
Dec 25 1999	2.000 ppb	0.693 (* Nondetect *)
Dec 26 1999	2.000 ppb	0.693 (* Nondetect *)
Dec 27 1999	2.000 ppb	0.693 (* Nondetect *)
Dec 28 1999	2.000 ppb	0.693 (* Nondetect *)
Dec 29 1999	2.000 ppb	0.693 (* Nondetect *)
Dec 30 1999	2.000 ppb	0.693 (* Nondetect *)

Observations (N): 37 Nondetects (%ND): 97

 Minimum:
 0.100 ppb
 Ln Minimum:
 -2.303

 Maximum:
 2.520 ppb
 Ln Maximum:
 0.924

 Mean:
 0.782 ppb
 Ln Mean:
 -1.244

 Std. Dev.:
 0.943 ppb
 Ln Std. Dev.:
 1.459

Normality Tests

Report Printed: 05-10-2005 16:28

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:VA Zip: County:PULASKI

County PULASK

Contact:

Phone:() -

Permit Type: Detection

Constituent:Hg Mercury

CAS Number: 7439-97-6

MCL: 0.000 ppb

ACL: 0.000 ppb Detect Limit: 4.000 ppb

Start Date:Mar 31 1996 End Date:Dec 30 1999

Normality Test on Observations for wells listed below:

Well:13MW1 Position: Upgradient Observations:37

 Scale
 Minimum
 Maximum
 Mean
 Std Dev

 Original:
 0.100
 2.000
 0.768
 0.920

 Log:
 -2.303
 0.693
 -1.250
 1.450

Well:13MW2 Position:Upgradient Observations:37

 Scale
 Minimum
 Maximum
 Mean
 Std Dev

 Original:
 0.100
 2.520
 0.782
 0.943

 Log:
 -2.303
 0.924
 -1.244
 1.459

Pooled Statistics

Observations: 74

Statistic Original Log Scale Scale Mean: 0.775 -1.2471.444 Std Dev: 0.9250.624 Skewness: 0.638 **Kurtosis:** -1.565 -1.609Minimum: 0.100 -2.303Maximum: 2.520 0.924 CV: 1.194 -1.158

Shapiro-Francia Statistics

Test 5% Critical 1% Critical Scale Statistic Value Value Original: 0.6336* Log: 0.6250* 0.9690 0.9560 0.9690 0.9560

^{*} Indicates statistically significant evidence of non-normality. GRIT/STAT Version 5.0

Nonparametric Prediction Interval

Report Printed May 10,2005

Facility:Haz. Waste Unit 13 - RAAP Parameter:Mercury(CAS Number:7439-97-6)

ONE-TAILED UPPER PARAMETRIC PREDICTION INTERVAL

Observations (n):

74

Conf. Level $(1-\alpha)$:

100.000%

UL: 0.000 ppb

-/.ND: ~99 Y.

Report Produced by GRITS/STAT 5.01

Page 1

Report Printed: 05-10-2005 17:24

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:VA Zip: County: PULASKI

Contact:

Phone:() -

Permit Type:Detection

Constituent: Ag Silver, total

CAS Number: 7440-22-4

MCL:

ACL:

0.000 ppb 0.000 ppb 4.000 ppb Detect Limit:

Start Date:Mar 31 1996 End Date: Dec 30 1999

Sample Date	Observation	Ln
Mar 31 1996	0.300 ppb	-1.204
Jun 30 1996	0.100 ppb	-2.303 (* Nondetect *)
Sep 30 1996	2.400 ppb	0.875
Dec 31 1996	0.900 ppb	-0.105
Mar 31 1997	1.000 ppb	0.000
Jun 30 1997	0.100 ppb	-2.303 (* Nondetect *)
Sep 30 1997	0.100 ppb	-2.303 (* Nondetect *)
Dec 31 1997	0.100 ppb	-2.303 (* Nondetect *)
Mar 09 1998	0.100 ppb	-2.303 (* Nondetect *)
May 14 1998	0.100 ppb	-2.303 (* Nondetect *)
Aug 14 1998	0.100 ppb	-2.303 (* Nondetect *)
Nov 23 1998	0.100 ppb	-2.303 (* Nondetect *)
Mar 13 1999	0.100 ppb	-2.303 (* Nondetect *)
May 27 1999	0.100 ppb	-2.303 (* Nondetect *)
Jul 27 1999	0.100 ppb	-2.303 (* Nondetect *)
Nov 08 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 10 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 11 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 12 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 13 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 14 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 15 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 16 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 17 1999	0.100 ppb	-2.303 (* Nondetect *)
		•

Dec 20 1999 2.000 ppb 0.693 (* Nond Dec 21 1999 2.000 ppb 0.693 (* Nond Dec 22 1999 2.000 ppb 0.693 (* Nond Dec 23 1999 2.000 ppb 0.693 (* Nond Dec 24 1999 2.000 ppb 0.693 (* Nond Dec 25 1999 2.000 ppb 0.693 (* Nond Dec 26 1999 2.000 ppb 0.693 (* Nond Dec 27 1999 2.000 ppb 0.693 (* Nond Dec 28 1999 2.000 ppb 0.693 (* Nond Dec 29 1999 2.000 ppb 0.693 (* Nond Dec 30 1999 2.000 ppb 0.693 (* Nond Dec 30 1999 2.000 ppb 0.693 (* Nond Dec 30 1999 2.000 ppb 0.693 (* Nond	letect *)
---	---

Observations (N): 37 Nondetects (%ND): 89

 Minimum:
 0.100 ppb
 Ln Minimum:
 -2.303

 Maximum:
 2.400 ppb
 Ln Maximum:
 0.875

 Mean:
 0.881 ppb
 Ln Mean:
 -1.013

 Std. Dev.:
 0.930 ppb
 Ln Std. Dev.:
 1.458

Sample Date	Observation	Ln
Mar 31 1996	0.100 ppb	-2.303 (* Nondetect *)
Jun 30 1996	0.100 ppb	-2.303 (* Nondetect *)
Sep 30 1996	0.400 ppb	-0.916
Dec 31 1996	0.700 ppb	-0.357
Mar 31 1997	0.100 ppb	-2.303 (* Nondetect *)
Jun 30 1997	0.100 ppb	-2.303 (* Nondetect *)
Sep 30 1997	0.100 ppb	-2.303 (* Nondetect *)
Dec 31 1997	0.100 ppb	-2.303 (* Nondetect *)
Mar 09 1998	0.100 ppb	-2.303 (* Nondetect *)
May 14 1998	0.100 ppb	-2.303 (* Nondetect *)
Aug 14 1998	0.100 ppb	-2.303 (* Nondetect *)
Nov 23 1998	0.100 ppb	-2.303 (* Nondetect *)
Mar 13 1999	0.100 ppb	-2.303 (* Nondetect *)
May 27 1999		-2.303 (* Nondetect *)
Jul 27 1999	0.100 ppb	-2.303 (* Nondetect *)
Nov 08 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 10 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 11 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 12 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 13 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 14 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 15 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 16 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 17 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 18 1999	2.000 ppb	0.693 (* Nondetect *)
Dec 19 1999	2.000 ppb	0.693 (* Nondetect *)
Dec 20 1999	2.000 ppb	0.693 (* Nondetect *)
Dec 21 1999	2.000 ppb	0.693 (* Nondetect *)
Dec 22 1999	2.000 ppb	0.693 (* Nondetect *)

Dec 23 1999	2.000 ppb	0.693 (* Nondetect *)
Dec 24 1999	2.000 ppb	0.693 (* Nondetect *)
Dec 25 1999	2.000 ppb	0.693 (* Nondetect *)
Dec 26 1999	2.000 ppb	0.693 (* Nondetect *)
Dec 27 1999	2.000 ppb	0.693 (* Nondetect *)
Dec 28 1999	2.000 ppb	0.693 (* Nondetect *)
Dec 29 1999	2.000 ppb	0.693 (* Nondetect *)
Dec 30 1999	2.000 ppb	0.693 (* Nondetect *)

Observations (N): 37 Nondetects (%ND): 95

 Minimum:
 0.100 ppb
 Ln Minimum:
 -2.303

 Maximum:
 2.000 ppb
 Ln Maximum:
 0.693

 Mean:
 0.792 ppb
 Ln Mean:
 -1.160

 Std. Dev.:
 0.908 ppb
 Ln Std. Dev.:
 1.434

Normality Tests

Report Printed: 05-10-2005 16:37

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:VA Zip:

County: PULASKI

Contact:

Phone:() -

Permit Type: Detection

Constituent: Ag Silver, total

CAS Number: 7440-22-4

MCL: 0.000 ppb

ACL: 0.000 ppb

Detect Limit: 4.000 ppb

Start Date:Mar 31 1996 End Date:Dec 30 1999

Normality Test on Observations for wells listed below:

Well:13MW1 Position:Upgradient Observations:37

Scale Minimum Maximum Mean Std Dev Original: 0.100 2.400 0.881 0.930

Log: -2.303 0.875 -1.013 1.458

Well:13MW2 Position:Upgradient Observations:37

Scale Minimum Maximum Mean Std Dev

Original: 0.100 2.000 0.792 0.908 Log: -2.303 0.693 -1.160 1.434

Pooled Statistics

Observations: 74

Statistic Original Log Scale Scale Mean: 0.836 -1.086Std Dev: 0.914 1.438 Skewness: 0.502 0.376 **Kurtosis:** -1.683 -1.799Minimum: -2.3030.100Maximum: 2.400 0.875 CV: 1.092 -1.324

Shapiro-Francia Statistics

Test 5% Critical 1% Critical Scale Statistic Value Value Original: 0.6793* Log: 0.6842* 0.9690 0.9560 0.9690 0.9560

^{*} Indicates statistically significant evidence of non-normality. GRIT/STAT Version 5.0

Nonparametric Prediction Interval Report Printed May 10,2005

Facility:Haz. Waste Unit 13 - RAAP Parameter:Silver, total(CAS Number:7440-22-4)

ONE-TAILED UPPER PARAMETRIC PREDICTION INTERVAL

Observations (n):

Conf. Level $(1-\alpha)$:

*** ***%

UL: 2:4-ppb

LL: 0.000

YND: 92%.

Page 1

Report Printed: 05-10-2005 16:44

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:VA Zip: County:PULASKI

Contact:
Phone:() -

Permit Type: Detection

Constituent: Acetone Acetone

CAS Number: 67-64-1

MCL: 0.000 ppb ACL: 0.000 ppb

Detect Limit: 50.000 ppb

Start Date:Mar 31 1996 End Date:Dec 30 1999

Sample Date	Observation	Ln
Mar 31 1996	5.000 ppb	1.609 (* Nondetect *)
Jun 30 1996	5.000 ppb	1.609 (* Nondetect *)
Sep 30 1996	5.000 ppb	1.609 (* Nondetect *)
Dec 31 1996	5.000 ppb	1.609 (* Nondetect *)
Mar 31 1997	5.000 ppb	1.609 (* Nondetect *)
Jun 30 1997	5.000 ppb	1.609 (* Nondetect *)
Sep 30 1997	5.000 ppb	1.609 (* Nondetect *)
Dec 31 1997	5.000 ppb	1.609 (* Nondetect *)
Mar 09 1998	5.000 ppb	1.609 (* Nondetect *)
May 14 1998	5.000 ppb	1.609 (* Nondetect *)
Aug 14 1998	5.000 ppb	1.609 (* Nondetect *)
Nov 23 1998	5.000 ppb	1.609 (* Nondetect *)
Mar 13 1999	5.000 ppb	1.609 (* Nondetect *)
May 27 1999	5.000 ppb	1.609 (* Nondetect *)
Jul 27 1999	5.000 ppb	1.609 (* Nondetect *)
Nov 08 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 10 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 11 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 12 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 13 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 14 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 15 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 16 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 17 1999	5.000 ppb	1.609 (* Nondetect *)

Dec 18 1999 Dec 19 1999 Dec 20 1999 Dec 21 1999 Dec 22 1999 Dec 23 1999 Dec 24 1999 Dec 25 1999 Dec 26 1999 Dec 27 1999 Dec 28 1999 Dec 29 1999	25.000 ppb 25.000 ppb	3.219 (* Nondetect *)
Dec 29 1999 Dec 30 1999	25.000 ppb 25.000 ppb	3.219 (* Nondetect *) 3.219 (* Nondetect *)

Observations (N): 37 Nondetects (%ND):100

 Minimum:
 5.000 ppb
 Ln Minimum:
 1.609

 Maximum:
 25.000 ppb
 Ln Maximum:
 3.219

 Mean:
 12.027 ppb
 Ln Mean:
 2.175

 Std. Dev.:
 9.680 ppb
 Ln Std. Dev.:
 0.779

Sample Date	Observation	Ln
Mar 31 1996	5.000 ppb	1.609 (* Nondetect *)
Jun 30 1996	5.000 ppb	1.609 (* Nondetect *)
Sep 30 1996	5.000 ppb	1.609 (* Nondetect *)
Dec 31 1996	5.000 ppb	1.609 (* Nondetect *)
Mar 31 1997	5.000 ppb	1.609 (* Nondetect *)
Jun 30 1997	5.000 ppb	1.609 (* Nondetect *)
Sep 30 1997	5.000 ppb	1.609 (* Nondetect *)
Dec 31 1997	5.000 ppb	1.609 (* Nondetect *)
Mar 09 1998	5.000 ppb	1.609 (* Nondetect *)
May 14 1998	5.000 ppb	1.609 (* Nondetect *)
Aug 14 1998	5.000 ppb	1.609 (* Nondetect *)
Nov 23 1998	5.000 ppb	1.609 (* Nondetect *)
Mar 13 1999	5.000 ppb	1.609 (* Nondetect *)
May 27 1999	5.000 ppb	1.609 (* Nondetect *)
Jul 27 1999	5.000 ppb	1.609 (* Nondetect *)
Nov 08 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 10 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 11 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 12 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 13 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 14 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 15 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 16 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 17 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 18 1999	25.000 ppb	3.219 (* Nondetect *)
Dec 19 1999	25.000 ppb	3.219 (* Nondetect *)
Dec 20 1999	25.000 ppb	3.219 (* Nondetect *)
Dec 21 1999	25.000 ppb	3.219 (* Nondetect *)
Dec 22 1999	25.000 ppb	3.219 (* Nondetect *)

25.000 ppb	3.219 (* Nondetect *)
	3.219 (* Nondetect *)
25.000 ppb	3.219 (* Nondetect *)
25.000 ppb	3.219 (* Nondetect *)
25.000 ppb	3.219 (* Nondetect *)
25.000 ppb	3.219 (* Nondetect *)
25.000 ppb	3.219 (* Nondetect *)
25.000 ppb	3.219 (* Nondetect *)
	25.000 ppb 25.000 ppb 25.000 ppb 25.000 ppb

Observations (N): 37 Nondetects (%ND):100

 Minimum:
 5.000 ppb
 Ln Minimum:
 1.609

 Maximum:
 25.000 ppb
 Ln Maximum:
 3.219

 Mean:
 12.027 ppb
 Ln Mean:
 2.175

 Std. Dev.:
 9.680 ppb
 Ln Std. Dev.:
 0.779

Report Printed: 05-10-2005 16:43

Facility:RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford County:PULASKI ST:VA Zip:

Contact: Phone:() -

Permit Type:Detection

Constituent:Benzene Benzene

CAS Number: 71-43-2

0.000 ppb 0.000 ppb 10.000 ppb MCL: ACL:

Detect Limit:

Start Date:Mar 31 1996 End Date:Dec 30 1999

Sample Date	Observation	Ln
Mar 31 1996	0.050 ppb	-2.996 (* Nondetect *)
Jun 30 1996	0.050 ppb	-2.996 (* Nondetect *)
Sep 30 1996	0.050 ppb	-2.996 (* Nondetect *)
Dec 31 1996	0.050 ppb	-2.996 (* Nondetect *)
Mar 31 1997	0.050 ppb	-2.996 (* Nondetect *)
Jun 30 1997	0.050 ppb	-2.996 (* Nondetect *)
Sep 30 1997	0.050 ppb	-2.996 (* Nondetect *)
Dec 31 1997	0.050 ppb	-2.996 (* Nondetect *)
Mar 09 1998	0.050 ppb	-2.996 (* Nondetect *)
May 14 1998	0.050 ppb	-2.996 (* Nondetect *)
Aug 14 1998	0.050 ppb	-2.996 (* Nondetect *)
Nov 23 1998	0.050 ppb	-2.996 (* Nondetect *)
Mar 13 1999	0.050 ppb	-2.996 (* Nondetect *)
May 27 1999		-2.996 (* Nondetect *)
Jul 27 1999	0.050 ppb	-2.996 (* Nondetect *)
Nov 08 1999	$0.050\mathrm{ppb}$	-2.996 (* Nondetect *)
Dec 10 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 11 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 12 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 13 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 14 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 15 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 16 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 17 1999	0.050 ppb	-2.996 (* Nondetect *)

Dec 18 1999 Dec 19 1999 Dec 20 1999 Dec 21 1999 Dec 22 1999 Dec 23 1999 Dec 24 1999 Dec 25 1999 Dec 26 1999 Dec 27 1999 Dec 28 1999 Dec 29 1999	5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb	1.609 (* Nondetect *)
Dec 28 1999 Dec 29 1999 Dec 30 1999	5.000 ppb 5.000 ppb 5.000 ppb	1.609 (* Nondetect *) 1.609 (* Nondetect *) 1.609 (* Nondetect *)

Observations (N): 37 Nondetects (%ND):100

 Minimum:
 0.050 ppb
 Ln Minimum:
 -2.996

 Maximum:
 5.000 ppb
 Ln Maximum:
 1.609

 Mean:
 1.789 ppb
 Ln Mean:
 -1.378

 Std. Dev.:
 2.396 ppb
 Ln Std. Dev.:
 2.229

Sample Date	Observation	Ln
Mar 31 1996	0.050 ppb	-2.996 (* Nondetect *)
Jun 30 1996	0.050 ppb	-2.996 (* Nondetect *)
Sep 30 1996	0.050 ppb	-2.996 (* Nondetect *)
Dec 31 1996	0.050 ppb	-2.996 (* Nondetect *)
Mar 31 1997	0.050 ppb	-2.996 (* Nondetect *)
Jun 30 1997	0.050 ppb	-2.996 (* Nondetect *)
Sep 30 1997	0.050 ppb	-2.996 (* Nondetect *)
Dec 31 1997	0.050 ppb	-2.996 (* Nondetect *)
Mar 09 1998	0.050 ppb	-2.996 (* Nondetect *)
May 14 1998	0.050 ppb	-2.996 (* Nondetect *)
Aug 14 1998	0.050 ppb	-2.996 (* Nondetect *)
Nov 23 1998	0.050 ppb	-2.996 (* Nondetect *)
Mar 13 1999	0.050 ppb	-2.996 (* Nondetect *)
May 27 1999		-2.996 (* Nondetect *)
Jul 27 1999	0.050 ppb	-2.996 (* Nondetect *)
Nov 08 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 10 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 11 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 12 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 13 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 14 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 15 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 16 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 17 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 18 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 19 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 20 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 21 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 22 1999	5.000 ppb	1.609 (* Nondetect *)

Dec 23 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 24 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 25 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 26 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 27 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 28 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 29 1999	5.000 ppb	,

Report Printed: 05-10-2005 16:46

Facility:RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:VA Zip: County:PULASKI

Contact:

Phone:() -

Permit Type: Detection

Constituent: Toluene Toluene

CAS Number: 108-88-3

MCL: 0.000 ppb ACL: 0.000 ppb

Detect Limit: 10.000 ppb

Start Date:Mar 31 1996 End Date:Dec 30 1999

Sample Date	Observation	Ln
Mar 31 1996	0.050 ppb	-2.996 (* Nondetect *)
Jun 30 1996	0.200 ppb	-1.609
Sep 30 1996	0.050 ppb	-2.996 (* Nondetect *)
Dec 31 1996	0.050 ppb	-2.996 (* Nondetect *)
Mar 31 1997	0.050 ppb	-2.996 (* Nondetect *)
Jun 30 1997	0.050 ppb	-2.996 (* Nondetect *)
Sep 30 1997	0.050 ppb	-2.996 (* Nondetect *)
Dec 31 1997	0.050 ppb	-2.996 (* Nondetect *)
Mar 09 1998	0.050 ppb	-2.996 (* Nondetect *)
May 14 1998	0.050 ppb	-2.996 (* Nondetect *)
Aug 14 1998	0.050 ppb	-2.996 (* Nondetect *)
Nov 23 1998	0.050 ppb	-2.996 (* Nondetect *)
Mar 13 1999	0.050 ppb	-2.996 (* Nondetect *)
May 27 1999	0.050 ppb	-2.996 (* Nondetect *)
Jul 27 1999	0.050 ppb	-2.996 (* Nondetect *)
Nov 08 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 10 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 11 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 12 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 13 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 14 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 15 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 16 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 17 1999	0.050 ppb	-2.996 (* Nondetect *)
	- ^	,

Dec 18 1999 Dec 19 1999 Dec 20 1999 Dec 21 1999 Dec 22 1999 Dec 23 1999 Dec 24 1999 Dec 25 1999 Dec 26 1999 Dec 27 1999 Dec 28 1999 Dec 29 1999	5.000 ppb 5.000 ppb	1.609 (* Nondetect *)
Dec 29 1999 Dec 30 1999	5.000 ppb 5.000 ppb	1.609 (* Nondetect *) 1.609 (* Nondetect *)

Observations (N): 37 Nondetects (%ND): 97

 Minimum:
 0.050 ppb
 Ln Minimum:
 -2.996

 Maximum:
 5.000 ppb
 Ln Maximum:
 1.609

 Mean:
 1.793 ppb
 Ln Mean:
 -1.340

 Std. Dev.:
 2.393 ppb
 Ln Std. Dev.:
 2.212

Sample Date	Observation	Ι.,.
Mar 31 1996	0.050 ppb	Ln 2 006 (* Nondotoot *)
Jun 30 1996	0.200 ppb	-2.996 (* Nondetect *) -1.609
Sep 30 1996	0.250 ppb 0.050 ppb	-2.996 (* Nondetect *)
Dec 31 1996	0.050 ppb	
Mar 31 1997	0.050 ppb	-2.996 (* Nondetect *) -2.996 (* Nondetect *)
Jun 30 1997	0.050 ppb	-2.996 (* Nondetect *)
Sep 30 1997	0.050 ppb	-2.996 (* Nondetect *)
Dec 31 1997	0.050 ppb	-2.996 (* Nondetect *)
Mar 09 1998	0.050 ppb	-2.996 (* Nondetect *)
May 14 1998	0.050 ppb	-2.996 (* Nondetect *)
Aug 14 1998	0.050 ppb	-2.996 (* Nondetect *)
Nov 23 1998	0.050 ppb	-2.996 (* Nondetect *)
Mar 13 1999	0.050 ppb	-2.996 (* Nondetect *)
May 27 1999	0.050 ppb	-2.996 (* Nondetect *)
Jul 27 1999	0.050 ppb	-2.996 (* Nondetect *)
Nov 08 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 10 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 11 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 12 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 13 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 14 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 15 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 16 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 17 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 18 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 19 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 20 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 21 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 22 1999	5.000 ppb	1.609 (* Nondetect *)
	1.1	, , , , , , , , , , , , , , , , , , , ,

Dec 23 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 24 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 25 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 26 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 27 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 28 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 29 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 30 1999	5.000 ppb	1.609 (* Nondetect *)

Observations (N): 37 Nondetects (%ND): 97

 Minimum:
 0.050 ppb
 Ln Minimum:
 -2.996

 Maximum:
 5.000 ppb
 Ln Maximum:
 1.609

 Mean:
 1.793 ppb
 Ln Mean:
 -1.340

 Std. Dev.:
 2.393 ppb
 Ln Std. Dev.:
 2.212

Report Printed: 05-10-2005 16:46

Facility:RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:VA Zip: County:PULASKI

Contact:
Phone:() -

Permit Type:Detection

Constituent:2,4-DNT 2,4-Dinitrotoluene

Start Date:Mar 31 1996 End Date:Dec 30 1999

Sample Date	Observation	Ln
Mar 31 1996	0.040 ppb	-3.219 (* Nondetect *)
Jun 30 1996	0.040 ppb	-3.219 (* Nondetect *)
Sep 30 1996	0.040 ppb	-3.219 (* Nondetect *)
Dec 31 1996	0.040 ppb	-3.219 (* Nondetect *)
Mar 31 1997	0.040 ppb	-3.219 (* Nondetect *)
Jun 30 1997	0.040 ppb	-3.219 (* Nondetect *)
Sep 30 1997	0.040 ppb	-3.219 (* Nondetect *)
Dec 31 1997	0.040 ppb	-3.219 (* Nondetect *)
Mar 09 1998	0.040 ppb	-3.219 (* Nondetect *)
May 14 1998	0.040 ppb	-3.219 (* Nondetect *)
Aug 14 1998	0.040 ppb	-3.219 (* Nondetect *)
Nov 23 1998	0.040 ppb	-3.219 (* Nondetect *)
Mar 13 1999	0.040 ppb	-3.219 (* Nondetect *)
May 27 1999	0.040 ppb	-3.219 (* Nondetect *)
Jul 27 1999	0.040 ppb	-3.219 (* Nondetect *)
Nov 08 1999	$0.040 \mathrm{ppb}$	-3.219 (* Nondetect *)
Dec 10 1999	0.040 ppb	-3.219 (* Nondetect *)
Dec 11 1999	0.040 ppb	-3.219 (* Nondetect *)
Dec 12 1999	0.040 ppb	-3.219 (* Nondetect *)
Dec 13 1999	0.040 ppb	-3.219 (* Nondetect *)
Dec 14 1999	0.040 ppb	-3.219 (* Nondetect *)
Dec 15 1999	0.040 ppb	-3.219 (* Nondetect *)
Dec 16 1999	0.040 ppb	-3.219 (* Nondetect *)
Dec 17 1999	0.040 ppb	-3.219 (* Nondetect *)

Observations (N): 37 Nondetects (%ND):100

 Minimum:
 0.040 ppb
 Ln Minimum:
 -3.219

 Maximum:
 10.000 ppb
 Ln Maximum:
 2.303

 Mean:
 3.539 ppb
 Ln Mean:
 -1.279

 Std. Dev.:
 4.820 ppb
 Ln Std. Dev.:
 2.672

Sample Date	Observation	Ln
Mar 31 1996	0.040 ppb	-3.219 (* Nondetect *)
Jun 30 1996	0.040 ppb	-3.219 (* Nondetect *)
Sep 30 1996	0.040 ppb	-3.219 (* Nondetect *)
Dec 31 1996	0.040 ppb	-3.219 (* Nondetect *)
Mar 31 1997	0.040 ppb	-3.219 (* Nondetect *)
Jun 30 1997	0.040 ppb	-3.219 (* Nondetect *)
Sep 30 1997	0.040 ppb	-3.219 (* Nondetect *)
Dec 31 1997	0.040 ppb	-3.219 (* Nondetect *)
Mar 09 1998	0.040 ppb	-3.219 (* Nondetect *)
May 14 1998	0.040 ppb	-3.219 (* Nondetect *)
Aug 14 1998	0.040 ppb	-3.219 (* Nondetect *)
Nov 23 1998	0.040 ppb	-3.219 (* Nondetect *)
Mar 13 1999	0.040 ppb	-3.219 (* Nondetect *)
May 27 1999	0.040 ppb	-3.219 (* Nondetect *)
Jul 27 1999	0.040 ppb	-3.219 (* Nondetect *)
Nov 08 1999	0.040 ppb	-3.219 (* Nondetect *)
Dec 10 1999	0.040 ppb	-3.219 (* Nondetect *)
Dec 11 1999	0.040 ppb	-3.219 (* Nondetect *)
Dec 12 1999	0.040 ppb	-3.219 (* Nondetect *)
Dec 13 1999	0.040 ppb	-3.219 (* Nondetect *)
Dec 14 1999	0.040 ppb	-3.219 (* Nondetect *)
Dec 15 1999	0.040 ppb	-3.219 (* Nondetect *)
Dec 16 1999	0.040 ppb	-3.219 (* Nondetect *)
Dec 17 1999	0.040 ppb	-3.219 (* Nondetect *)
Dec 18 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 19 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 20 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 21 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 22 1999	10.000 ppb	2.303 (* Nondetect *)

Dec 23 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 24 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 25 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 26 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 27 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 28 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 29 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 30 1999	10.000 ppb	2.303 (* Nondetect *)

Observations (N): 37 Nondetects (%ND):100

 Minimum:
 0.040 ppb
 Ln Minimum:
 -3.219

 Maximum:
 10.000 ppb
 Ln Maximum:
 2.303

 Mean:
 3.539 ppb
 Ln Mean:
 -1.279

 Std. Dev.:
 4.820 ppb
 Ln Std. Dev.:
 2.672

Report Printed: 05-10-2005 16:47

Facility:RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford County:PULASKI ST:VA Zip:

Contact:

Phone:() -

Permit Type: Detection

Constituent: Di-N-Bu Di-n-Butylphthalate

CAS Number: 84-74-2

MCL:

ACL:

0.000 ppb 0.000 ppb 20.000 ppb Detect Limit:

Start Date:Mar 31 1996 End Date:Dec 30 1999

Sample Date	Observation	Ln
Mar 31 1996	2.500 ppb	0.916 (* Nondetect *)
Jun 30 1996	2.500 ppb	0.916 (* Nondetect *)
Sep 30 1996	2.500 ppb	0.916 (* Nondetect *)
Dec 31 1996	2.500 ppb	0.916 (* Nondetect *)
Mar 31 1997	2.500 ppb	0.916 (* Nondetect *)
Jun 30 1997	2.500 ppb	0.916 (* Nondetect *)
Sep 30 1997	2.500 ppb	0.916 (* Nondetect *)
Dec 31 1997	2.500 ppb	0.916 (* Nondetect *)
Mar 09 1998	2.500 ppb	0.916 (* Nondetect *)
May 14 1998	2.500 ppb	0.916 (* Nondetect *)
Aug 14 1998	2.500 ppb	0.916 (* Nondetect *)
Nov 23 1998	2.500 ppb	0.916 (* Nondetect *)
Mar 13 1999	2.500 ppb	0.916 (* Nondetect *)
May 27 1999	2.500 ppb	0.916 (* Nondetect *)
Jul 27 1999	2.500 ppb	0.916 (* Nondetect *)
Nov 08 1999	$2.500 \mathrm{ppb}$	0.916 (* Nondetect *)
Dec 10 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 11 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 12 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 13 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 14 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 15 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 16 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 17 1999	2.500 ppb	0.916 (* Nondetect *)

Observations (N): 37 Nondetects (%ND):100

 Minimum:
 2.500 ppb
 Ln Minimum:
 0.916

 Maximum:
 10.000 ppb
 Ln Maximum:
 2.303

 Mean:
 5.135 ppb
 Ln Mean:
 1.403

 Std. Dev.:
 3.630 ppb
 Ln Std. Dev.:
 0.671

Sample Date	Observation	Ln
Mar 31 1996	2.500 ppb	0.916 (* Nondetect *)
Jun 30 1996	2.500 ppb	0.916 (* Nondetect *)
Sep 30 1996	2.500 ppb	0.916 (* Nondetect *)
Dec 31 1996	2.500 ppb	0.916 (* Nondetect *)
Mar 31 1997	2.500 ppb	0.916 (* Nondetect *)
Jun 30 1997	2.500 ppb	0.916 (* Nondetect *)
Sep 30 1997	2.500 ppb	0.916 (* Nondetect *)
Dec 31 1997	2.500 ppb	0.916 (* Nondetect *)
Mar 09 1998	2.500 ppb	0.916 (* Nondetect *)
May 14 1998		0.916 (* Nondetect *)
Aug 14 1998	2.500 ppb	0.916 (* Nondetect *)
Nov 23 1998	2.500 ppb	0.916 (* Nondetect *)
Mar 13 1999	2.500 ppb	0.916 (* Nondetect *)
May 27 1999	2.500 ppb	0.916 (* Nondetect *)
Jul 27 1999	2.500 ppb	0.916 (* Nondetect *)
Nov 08 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 10 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 11 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 12 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 13 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 14 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 15 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 16 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 17 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 18 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 19 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 20 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 21 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 22 1999	10.000 ppb	2.303 (* Nondetect *)

Dec 23 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 24 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 25 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 26 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 27 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 28 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 29 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 30 1999	10.000 ppb	2.303 (* Nondetect *)

Observations (N): 37 Nondetects (%ND):100

 Minimum:
 2.500 ppb
 Ln Minimum:
 0.916

 Maximum:
 10.000 ppb
 Ln Maximum:
 2.303

 Mean:
 5.135 ppb
 Ln Mean:
 1.403

 Std. Dev.:
 3.630 ppb
 Ln Std. Dev.:
 0.671

Report Printed: 05-10-2005 16:47

Facility:RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:VA Zip: County:PULASKI

Phone:() -

Permit Type: Detection

Constituent: DEthPhth Diethylphthalate

CAS Number: 84-66-2 MCL: 0.000 ppb ACL: 0.000 ppb

ACL: 0.000 ppb Detect Limit: 20.000 ppb

Start Date:Mar 31 1996 End Date:Dec 30 1999

Sample Date	Observation	Ln
Mar 31 1996	2.500 ppb	0.916 (* Nondetect *)
Jun 30 1996	2.500 ppb	0.916 (* Nondetect *)
Sep 30 1996	2.500 ppb	0.916 (* Nondetect *)
Dec 31 1996	2.500 ppb	0.916 (* Nondetect *)
Mar 31 1997	2.500 ppb	0.916 (* Nondetect *)
Jun 30 1997	2.500 ppb	0.916 (* Nondetect *)
Sep 30 1997	2.500 ppb	0.916 (* Nondetect *)
Dec 31 1997	2.500 ppb	0.916 (* Nondetect *)
Mar 09 1998	2.500 ppb	0.916 (* Nondetect *)
May 14 1998	2.500 ppb	0.916 (* Nondetect *)
Aug 14 1998	2.500 ppb	0.916 (* Nondetect *)
Nov 23 1998	2.500 ppb	0.916 (* Nondetect *)
Mar 13 1999	2.500 ppb	0.916 (* Nondetect *)
May 27 1999		0.916 (* Nondetect *)
Jul 27 1999	2.500 ppb	0.916 (* Nondetect *)
Nov 08 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 10 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 11 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 12 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 13 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 14 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 15 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 16 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 17 1999	2.500 ppb	0.916 (* Nondetect *)

Observations (N): 37 Nondetects (%ND):100

 Minimum:
 2.500 ppb
 Ln Minimum:
 0.916

 Maximum:
 10.000 ppb
 Ln Maximum:
 2.303

 Mean:
 5.135 ppb
 Ln Mean:
 1.403

 Std. Dev.:
 3.630 ppb
 Ln Std. Dev.:
 0.671

Sample Date	Observation	Ln
Mar 31 1996	2.500 ppb	0.916 (* Nondetect *)
Jun 30 1996	2.500 ppb	0.916 (* Nondetect *)
Sep 30 1996	2.500 ppb	0.916 (* Nondetect *)
Dec 31 1996	2.500 ppb	0.916 (* Nondetect *)
Mar 31 1997	2.500 ppb	0.916 (* Nondetect *)
Jun 30 1997	2.500 ppb	0.916 (* Nondetect *)
Sep 30 1997	2.500 ppb	0.916 (* Nondetect *)
Dec 31 1997	2.500 ppb	0.916 (* Nondetect *)
Mar 09 1998	2.500 ppb	0.916 (* Nondetect *)
May 14 1998	2.500 ppb	0.916 (* Nondetect *)
Aug 14 1998	2.500 ppb	0.916 (* Nondetect *)
Nov 23 1998	2.500 ppb	0.916 (* Nondetect *)
Mar 13 1999	2.500 ppb	0.916 (* Nondetect *)
May 27 1999	2.500 ppb	0.916 (* Nondetect *)
Jul 27 1999	2.500 ppb	0.916 (* Nondetect *)
Nov 08 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 10 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 11 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 12 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 13 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 14 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 15 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 16 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 17 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 18 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 19 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 20 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 21 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 22 1999	10.000 ppb	2.303 (* Nondetect *)

10.000 ppb	2.303 (* Nondetect *)
10.000 ppb	2.303 (* Nondetect *)
10.000 ppb	2.303 (* Nondetect *)
10.000 ppb	2.303 (* Nondetect *)
10.000 ppb	2.303 (* Nondetect *)
10.000 ppb	2.303 (* Nondetect *)
10.000 ppb	2.303 (* Nondetect *)
10.000 ppb	2.303 (* Nondetect *)
	10.000 ppb 10.000 ppb 10.000 ppb 10.000 ppb 10.000 ppb

Observations (N): 37 Nondetects (%ND):100

 Minimum:
 2.500 ppb
 Ln Minimum:
 0.916

 Maximum:
 10.000 ppb
 Ln Maximum:
 2.303

 Mean:
 5.135 ppb
 Ln Mean:
 1.403

 Std. Dev.:
 3.630 ppb
 Ln Std. Dev.:
 0.671

Data Set Summary

Report Printed: 05-10-2005 16:47

Facility:RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford County:PULASKI ST:VA Zip:

Contact: Phone:() -

Permit Type: Detection

Diphenylamine Constituent:DPA

Detect Limit:

Start Date:Mar 31 1996 End Date:Dec 30 1999

Sample Date	Observation	Ln
Mar 31 1996	5.000 ppb	1.609 (* Nondetect *)
Jun 30 1996	5.000 ppb	1.609 (* Nondetect *)
Sep 30 1996	5.000 ppb	1.609 (* Nondetect *)
Dec 31 1996	5.000 ppb	1.609 (* Nondetect *)
Mar 31 1997	5.000 ppb	1.609 (* Nondetect *)
Jun 30 1997	5.000 ppb	1.609 (* Nondetect *)
Sep 30 1997	5.000 ppb	1.609 (* Nondetect *)
Dec 31 1997	5.000 ppb	1.609 (* Nondetect *)
Mar 09 1998	5.000 ppb	1.609 (* Nondetect *)
May 14 1998	5.000 ppb	1.609 (* Nondetect *)
Aug 14 1998	5.000 ppb	1.609 (* Nondetect *)
Nov 23 1998	5.000 ppb	1.609 (* Nondetect *)
Mar 13 1999	5.000 ppb	1.609 (* Nondetect *)
May 27 1999	5.000 ppb	1.609 (* Nondetect *)
Jul 27 1999	5.000 ppb	1.609 (* Nondetect *)
Nov 08 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 10 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 11 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 12 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 13 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 14 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 15 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 16 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 17 1999	5.000 ppb	1.609 (* Nondetect *)

Observations (N): 37 Nondetects (%ND):100

 Minimum:
 5.000 ppb
 Ln Minimum:
 1.609

 Maximum:
 10.000 ppb
 Ln Maximum:
 2.303

 Mean:
 6.757 ppb
 Ln Mean:
 1.853

 Std. Dev.:
 2.420 ppb
 Ln Std. Dev.:
 0.335

Sample Date	Observation	Ln
Mar 31 1996	5.000 ppb	1.609 (* Nondetect *)
Jun 30 1996	5.000 ppb	1.609 (* Nondetect *)
Sep 30 1996	5.000 ppb	1.609 (* Nondetect *)
Dec 31 1996	5.000 ppb	1.609 (* Nondetect *)
Mar 31 1997	5.000 ppb	1.609 (* Nondetect *)
Jun 30 1997	5.000 ppb	1.609 (* Nondetect *)
Sep 30 1997	5.000 ppb	1.609 (* Nondetect *)
Dec 31 1997	5.000 ppb	1.609 (* Nondetect *)
Mar 09 1998	5.000 ppb	1.609 (* Nondetect *)
May 14 1998	5.000 ppb	1.609 (* Nondetect *)
Aug 14 1998	5.000 ppb	1.609 (* Nondetect *)
Nov 23 1998	5.000 ppb	1.609 (* Nondetect *)
Mar 13 1999	5.000 ppb	1.609 (* Nondetect *)
May 27 1999		1.609 (* Nondetect *)
Jul 27 1999	5.000 ppb	1.609 (* Nondetect *)
Nov 08 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 10 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 11 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 12 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 13 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 14 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 15 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 16 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 17 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 18 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 19 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 20 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 21 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 22 1999	10.000 ppb	2.303 (* Nondetect *)

Dec 23 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 24 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 25 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 26 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 27 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 28 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 29 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 30 1999	10.000 ppb	2.303 (* Nondetect *)

Observations (N): 37 Nondetects (%ND):100

 Minimum:
 5.000 ppb
 Ln Minimum:
 1.609

 Maximum:
 10.000 ppb
 Ln Maximum:
 2.303

 Mean:
 6.757 ppb
 Ln Mean:
 1.853

 Std. Dev.:
 2.420 ppb
 Ln Std. Dev.:
 0.335

Data Set Summary

Report Printed: 05-10-2005 16:48

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:VA Zip: County:PULASKI

Contact:
Phone:() -

Permit Type: Detection

Constituent: NGlycern Nitroglycerin or 1, 2, 3-Propanetriol, trinitrate

CAS Number: 55-63-0 MCL: 0.000 mg/l

ACL: 0.000 mg/l
Detect Limit: 20.000 mg/l

Start Date:Mar 31 1996 End Date:Dec 30 1999

Sample Date	Observation	Ln
Mar 31 1996	0.005 mg/l	-5.298 (* Nondetect *)
Jun 30 1996	0.005 mg/l	-5.298 (* Nondetect *)
Sep 30 1996	0.005 mg/l	-5.298 (* Nondetect *)
Dec 31 1996	0.005 mg/l	-5.298 (* Nondetect *)
Mar 31 1997	0.005 mg/l	-5.298 (* Nondetect *)
Jun 30 1997	0.005 mg/l	-5.298 (* Nondetect *)
Sep 30 1997	0.005 mg/l	-5.298 (* Nondetect *)
Dec 31 1997	0.005 mg/l	-5.298 (* Nondetect *)
Mar 09 1998	0.005 mg/l	-5.298 (* Nondetect *)
May 14 1998		-5.298 (* Nondetect *)
Aug 14 1998	0.005 mg/l	-5.298 (* Nondetect *)
Nov 23 1998	0.005 mg/l	-5.298 (* Nondetect *)
Mar 13 1999	0.005 mg/l	-5.298 (* Nondetect *)
May 27 1999	9	-5.298 (* Nondetect *)
Jul 27 1999	0.005 mg/l	-5.298 (* Nondetect *)
Nov 08 1999	0.005 mg/l	-5.298 (* Nondetect *)
Dec 10 1999	0.005 mg/l	-5.298 (* Nondetect *)
Dec 11 1999	0.005 mg/l	-5.298 (* Nondetect *)
Dec 12 1999	0.005 mg/l	-5.298 (* Nondetect *)
Dec 13 1999	0.005 mg/l	-5.298 (* Nondetect *)
Dec 14 1999	0.005 mg/l	-5.298 (* Nondetect *)
Dec 15 1999	0.005 mg/l	-5.298 (* Nondetect *)
Dec 16 1999	0.005 mg/l	-5.298 (* Nondetect *)
Dec 17 1999	0.005 mg/l	-5.298 (* Nondetect *)

Observations (N): 37 Nondetects (%ND):100

 Minimum:
 0.005 mg/l
 Ln Minimum:
 -5.298

 Maximum:
 10.000 mg/l
 Ln Maximum:
 2.303

 Mean:
 3.517 mg/l
 Ln Mean:
 -2.628

 Std. Dev.:
 4.837 mg/l
 Ln Std. Dev.:
 3.679

Sample Date	Observation	Ln
Mar 31 1996	0.005 mg/l	-5.298 (* Nondetect *)
Jun 30 1996	0.005 mg/l	-5.298 (* Nondetect *)
Sep 30 1996	0.005 mg/1	-5.298 (* Nondetect *)
Dec 31 1996	0.005 mg/1	-5.298 (* Nondetect *)
Mar 31 1997	0.005 mg/l	-5.298 (* Nondetect *)
Jun 30 1997	0.005 mg/l	-5.298 (* Nondetect *)
Sep 30 1997	0.005 mg/l	-5.298 (* Nondetect *)
Dec 31 1997	0.005 mg/l	-5.298 (* Nondetect *)
Mar 09 1998	0.005 mg/l	-5.298 (* Nondetect *)
May 14 1998	0.005 mg/l	-5.298 (* Nondetect *)
Aug 14 1998	0.005 mg/l	-5.298 (* Nondetect *)
Nov 23 1998	0.005 mg/l	-5.298 (* Nondetect *)
Mar 13 1999	0.005 mg/l	-5.298 (* Nondetect *)
May 27 1999	0.005 mg/l	-5.298 (* Nondetect *)
Jul 27 1999	0.005 mg/l	-5.298 (* Nondetect *)
Nov 08 1999	0.005 mg/l	-5.298 (* Nondetect *)
Dec 10 1999	0.005 mg/l	-5.298 (* Nondetect *)
Dec 11 1999	0.005 mg/l	-5.298 (* Nondetect *)
Dec 12 1999	0.005 mg/l	-5.298 (* Nondetect *)
Dec 13 1999	0.005 mg/l	-5.298 (* Nondetect *)
Dec 14 1999	0.005 mg/l	-5.298 (* Nondetect *)
Dec 15 1999	0.005 mg/l	-5.298 (* Nondetect *)
Dec 16 1999	0.005 mg/l	-5.298 (* Nondetect *)
Dec 17 1999	0.005 mg/l	-5.298 (* Nondetect *)
Dec 18 1999	10.000 mg/l	2.303 (* Nondetect *)
Dec 19 1999	10.000 mg/l	2.303 (* Nondetect *)
Dec 20 1999	10.000 mg/l	2.303 (* Nondetect *)
Dec 21 1999	10.000 mg/l	2.303 (* Nondetect *)
Dec 22 1999	10.000 mg/l	2.303 (* Nondetect *)
	_	•

)
)
Ĺ
)
)
)
)
)

Observations (N): 37 Nondetects (%ND):100

> Minimum: 0.005 mg/l Ln Minimum: -5.298 Maximum: 10.000 mg/l Ln Maximum: 2.303

Mean:

3.517 mg/l Std. Dev.:

Ln Mean: -2.628 4.837 mg/l Ln Std. Dev.: 3.679

Data Set Summary

Report Printed: 05-10-2005 16:59

Facility:RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:VA Zip: County:PULASKI

Contact:
Phone:() -

Permit Type: Detection

Constituent: Phenols Phenols, total

Start Date:Mar 31 1996 End Date:Dec 30 1999

Sample Date	Observation	Ln
Mar 31 1996	20.000 ppb	2.996
Jun 30 1996	5.000 ppb	1.609 (* Nondetect *)
Sep 30 1996	5.000 ppb	1.609 (* Nondetect *)
Dec 31 1996	5.000 ppb	1.609 (* Nondetect *)
Mar 31 1997	14.000 ppb	2.639`
Jun 30 1997	5.000 ppb	1.609 (* Nondetect *)
Sep 30 1997	5.000 ppb	1.609 (* Nondetect *)
Dec 31 1997	5.000 ppb	1.609 (* Nondetect *)
Mar 09 1998	5.000 ppb	1.609 (* Nondetect *)
May 14 1998	5.000 ppb	1.609 (* Nondetect *)
Aug 14 1998	5.000 ppb	1.609 (* Nondetect *)
Nov 23 1998	5.000 ppb	1.609 (* Nondetect *)
Mar 13 1999	5.000 ppb	1.609 (* Nondetect *)
May 27 1999	5.000 ppb	1.609 (* Nondetect *)
Jul 27 1999	5.000 ppb	1.609 (* Nondetect *)
Nov 08 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 10 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 11 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 12 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 13 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 14 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 15 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 16 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 17 1999	5.000 ppb	1.609 (* Nondetect *)

Dec 18 1999 Dec 19 1999 Dec 20 1999 Dec 21 1999 Dec 22 1999 Dec 23 1999 Dec 24 1999 Dec 25 1999 Dec 26 1999 Dec 27 1999 Dec 28 1999 Dec 29 1999	5.000 ppb 5.000 ppb	1.609 (* Nondetect *) 2.565 1.609 (* Nondetect *) 1.609 (* Nondetect *) 1.609 (* Nondetect *) 1.609 (* Nondetect *)
Dec 29 1999 Dec 30 1999		` '

Observations (N): 37 Nondetects (%ND): 92

 Minimum:
 5.000 ppb
 Ln Minimum:
 1.609

 Maximum:
 20.000 ppb
 Ln Maximum:
 2.996

 Mean:
 5.865 ppb
 Ln Mean:
 1.701

 Std. Dev.:
 3.084 ppb
 Ln Std. Dev.:
 0.316

Sample Date	Observation	Ln
Mar 31 1996	5.000 ppb	1.609 (* Nondetect *)
Jun 30 1996	5.000 ppb	1.609 (* Nondetect *)
Sep 30 1996	5.000 ppb	1.609 (* Nondetect *)
Dec 31 1996	5.000 ppb	1.609 (* Nondetect *)
Mar 31 1997	5.000 ppb	1.609 (* Nondetect *)
Jun 30 1997	5.000 ppb	1.609 (* Nondetect *)
Sep 30 1997	5.000 ppb	1.609 (* Nondetect *)
Dec 31 1997	5.000 ppb	1.609 (* Nondetect *)
Mar 09 1998	5.000 ppb	1.609 (* Nondetect *)
May 14 1998	5.000 ppb	1.609 (* Nondetect *)
Aug 14 1998	5.000 ppb	1.609 (* Nondetect *)
Nov 23 1998	5.000 ppb	1.609 (* Nondetect *)
Mar 13 1999	5.000 ppb	1.609 (* Nondetect *)
May 27 1999	5.000 ppb	1.609 (* Nondetect *)
Jul 27 1999	5.000 ppb	1.609 (* Nondetect *)
Nov 08 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 10 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 11 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 12 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 13 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 14 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 15 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 16 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 17 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 18 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 19 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 20 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 21 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 22 1999	5.000 ppb	1.609 (* Nondetect *)
	-	

Dec 23 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 24 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 25 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 26 1999	12.000 ppb	2.485
Dec 27 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 28 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 29 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 30 1999	5.000 ppb	1.609 (* Nondetect *)

Observations (N): 37 Nondetects (%ND): 97

 Minimum:
 5.000 ppb
 Ln Minimum:
 1.609

 Maximum:
 12.000 ppb
 Ln Maximum:
 2.485

 Mean:
 5.189 ppb
 Ln Mean:
 1.633

 Std. Dev.:
 1.151 ppb
 Ln Std. Dev.:
 0.144

Normality Tests

Report Printed: 05-10-2005 16:59

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:VA Zip:

County:PULASKI

Contact:

Phone:() -

Permit Type: Detection

Constituent: Phenols Phenols, total

CAS Number: 108-95-2

MCL: 0.000 ppb ACL: 0.000 ppb

ACL: 0.000 ppb Detect Limit: 10.000 ppb

Start Date:Mar 31 1996 End Date:Dec 30 1999

Normality Test on Observations for wells listed below:

Well:13MW1 Position:Upgradient Observations:37

Scale Minimum Maximum Mean Std Dev Original: 5.000 20.000 5.865 3.084

Log: 1.609 2.996 1.701 0.316

Well:13MW2 Position:Upgradient Observations:37

Scale Minimum Maximum Mean Std Dev Original: 5.000 12.000 5.189 1.151

Log: 1.609 2.485 1.633 0.144

Pooled Statistics

Observations: 74

Statistic **Original** Log Scale Scale Mean: 5.527 1.667 Std Dev: 2.336 0.246 Skewness: 4.671* 4.192* **Kurtosis:** 22.128 16.382 Minimum: 5.000 1.609 2.996 20.000 Maximum:

CV: 0.4230.148

Shapiro-Francia Statistics

Test 5% Critical 1% Critical Scale Statistic Value Value Original: Log: 0.2166* 0.9690 0.9560 0.9560 0.2249* 0.9690

^{*} Indicates statistically significant evidence of non-normality. GRIT/STAT Version 5.0

Nonparametric Prediction Interval Report Printed May 10,2005

Facility:Haz. Waste Unit 13 - RAAP Parameter:Phenols, total(CAS Number:108-95-2)

ONE-TAILED UPPER PARAMETRIC PREDICTION INTERVAL

Observations (n): Conf. Level $(1-\alpha)$:

74

100.000%

20.0 UL: 5.000 ppb LL: 0.000

1,ND: 97%

Report Produced by GRITS/STAT 5.01

Page 1

Data Set Summary

Report Printed: 05-10-2005 17:05

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:VA Zip: County:PULASKI

Contact:
Phone:() -

Permit Type: Detection

Constituent: TOC Total Organic Carbon

CAS Number:

MCL: 0.000 ppb ACL: 0.000 ppb

Detect Limit: 2000.000 ppb

Start Date:Mar 31 1996 End Date:Dec 30 1999

Sample Date	Observation	Ln
Mar 31 1996	500.000 ppb	6.215 (* Nondetect *)
Jun 30 1996	3000.000 ppb	8.006
Sep 30 1996	500.000 ppb	6.215 (* Nondetect *)
Dec 31 1996	500.000 ppb	6.215 (* Nondetect *)
Mar 31 1997	500.000 ppb	6.215 (* Nondetect *)
Jun 30 1997	2000.000 ppb	7.601
Sep 30 1997	500.000 ppb	6.215 (* Nondetect *)
Dec 31 1997	500.000 ppb	6.215 (* Nondetect *)
Mar 09 1998	500.000 ppb	6.215 (* Nondetect *)
May 14 1998		6.215 (* Nondetect *)
Aug 14 1998	500.000 ppb	6.215 (* Nondetect *)
Nov 23 1998	500.000 ppb	6.215 (* Nondetect *)
Mar 13 1999	1725.000 ppb	7.453
May 27 1999	500.000 ppb	6.215 (* Nondetect *)
Jul 27 1999	500.000 ppb	6.215 (* Nondetect *)
Nov 08 1999	500.000 ppb	6.215 (* Nondetect *)
Dec 10 1999	500.000 ppb	6.215 (* Nondetect *)
Dec 11 1999	500.000 ppb	6.215 (* Nondetect *)
Dec 12 1999	1550.000 ppb	7.346
Dec 13 1999	500.000 ppb	6.215 (* Nondetect *)
Dec 14 1999	500.000 ppb	6.215 (* Nondetect *)
Dec 15 1999	500.000 ppb	6.215 (* Nondetect *)
Dec 16 1999	500.000 ppb	6.215 (* Nondetect *)
Dec 17 1999	500.000 ppb	6.215 (* Nondetect *)

Dec 18 1999 Dec 19 1999 Dec 20 1999 Dec 21 1999 Dec 22 1999 Dec 23 1999 Dec 24 1999 Dec 25 1999 Dec 26 1999 Dec 27 1999 Dec 28 1999 Dec 29 1999 Dec 30 1999	1000.000 ppb 1000.000 ppb 1000.000 ppb 1000.000 ppb 1000.000 ppb 2177.000 ppb 10600.000 ppb 10600.000 ppb 5682.000 ppb 8370.000 ppb 1000.000 ppb 1000.000 ppb	6.908 (* Nondetect *) 7.686 9.269 9.269 8.645 9.032 6.908 (* Nondetect *) 6.908 (* Nondetect *) 6.908 (* Nondetect *)
Dec 30 1999	1000.000 ppb	6.908 (* Nondetect *)

Observations (N): 37 Nondetects (%ND): 76

 Minimum:
 500.000 ppb
 Ln Minimum:
 6.215

 Maximum:
 10600.000 ppb
 Ln Maximum:
 9.269

 Mean:
 1721.730 ppb
 Ln Mean:
 6.861

 Std. Dev.:
 2653.605 ppb
 Ln Std. Dev.:
 0.928

Sample Date	Observation	Ln
Mar 31 1996	500.000 ppb	6.215 (* Nondetect *)
Jun 30 1996	3000.000 ppb	8.006
Sep 30 1996	500.000 ppb	6.215 (* Nondetect *)
Dec 31 1996	500.000 ppb	6.215 (* Nondetect *)
Mar 31 1997	500.000 ppb	6.215 (* Nondetect *)
Jun 30 1997	2000.000 ppb	7.601
Sep 30 1997	500.000 ppb	6.215 (* Nondetect *)
Dec 31 1997	500.000 ppb	6.215 (* Nondetect *)
Mar 09 1998	500.000 ppb	6.215 (* Nondetect *)
May 14 1998	1400.000 ppb	7.244
Aug 14 1998	500.000 ppb	6.215 (* Nondetect *)
Nov 23 1998	500.000 ppb	6.215 (* Nondetect *)
Mar 13 1999	8625.000 ppb	9.062
May 27 1999	500.000 ppb	6.215 (* Nondetect *)
Jul 27 1999	500.000 ppb	6.215 (* Nondetect *)
Nov 08 1999	500.000 ppb	6.215 (* Nondetect *)
Dec 10 1999	500.000 ppb	6.215 (* Nondetect *)
Dec 11 1999	500.000 ppb	6.215 (* Nondetect *)
Dec 12 1999	1625.000 ppb	7.393
Dec 13 1999	500.000 ppb	6.215 (* Nondetect *)
Dec 14 1999	500.000 ppb	6.215 (* Nondetect *)
Dec 15 1999	500.000 ppb	6.215 (* Nondetect *)
Dec 16 1999	500.000 ppb	6.215 (* Nondetect *)
Dec 17 1999	500.000 ppb	6.215 (* Nondetect *)
Dec 18 1999	1000.000 ppb	6.908 (* Nondetect *)
Dec 19 1999	1000.000 ppb	6.908 (* Nondetect *)
Dec 20 1999	1000.000 ppb	6.908 (* Nondetect *)
Dec 21 1999	1000.000 ppb	6.908 (* Nondetect *)
Dec 22 1999	1000.000 ppb	6 008 (* Nondatast *)
200 == 1777	1000.000 ppb	6.908 (* Nondetect *)

Dec 23 1999	3550.000 ppb	8.175
Dec 24 1999	1505.000 ppb	7.317
Dec 25 1999	8417.000 ppb	9.038
Dec 26 1999	5972.000 ppb	8.695
Dec 27 1999	8255.000 ppb	9.019
Dec 28 1999	1000.000 ppb	6.908 (* Nondetect *)
Dec 29 1999	1000.000 ppb	6.908 (* Nondetect *)
Dec 30 1999	1042.000 ppb	6.949 `
	**	

Observations (N): 37 Nondetects (%ND): 70

 Minimum:
 500.000 ppb
 Ln Minimum:
 6.215

 Maximum:
 8625.000 ppb
 Ln Maximum:
 9.062

 Mean:
 1672.730 ppb
 Ln Mean:
 6.890

 Std. Dev.:
 2302.313 ppb
 Ln Std. Dev.:
 0.909

Normality Tests

Report Printed: 05-10-2005 17:02

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:VA Zip:

County: PULASKI

Contact:

Phone:() -

Permit Type: Detection

Constituent: TOC Total Organic Carbon

CAS Number:

MCL: 0.000 ppb

ACL: 0.000 ppb

Detect Limit: 2000.000 ppb

Start Date:Mar 31 1996 End Date:Dec 30 1999

Normality Test on Observations for wells listed below:

Well:13MW1 Position:Upgradient Observations:37

 Scale
 Minimum
 Maximum
 Mean
 Std Dev

 Original:
 500.000
 10600.000
 1721.730
 2653.605

Log: 6.215 9.269 6.861 0.928

Well:13MW2 Position:Upgradient Observations:37

Scale Minimum Maximum Mean Std Dev Original: 500.000 8625.000 1672.730 2302.313

Log: 6.215 9.062 6.890 0.909

Pooled Statistics

Observations: 74

Statistic Original Log Scale Scale

Mean: 1697.230 6.876 Std Dev: 2467.227 0.912

Skewness: 2.485* 1.364* Kurtosis: 5.030 0.781

Minimum: 500.000 6.215 Maximum: 10600.000 9.269 CV: 1.454 0.133

Shapiro-Francia Statistics

Test 5% Critical 1% Critical Scale Statistic Value Value Original: 0.5304* Log: 0.7452* 0.9690 0.9560 0.9690 0.9560

^{*} Indicates statistically significant evidence of non-normality. GRIT/STAT Version 5.0

Nonparametric Prediction Interval Report Printed May 10,2005

Page 1

Facility: Haz. Waste Unit 13 - RAAP

Parameter: Total Organic Carbon(CAS Number:- -)

ONE-TAILED UPPER PARAMETRIC PREDICTION INTERVAL

Observations (n):

Conf. Level $(1-\alpha)$:

.%

UL: 300.000 ppb

LL: 0.000

Y.ND: 73%.

Normality Tests

Report Printed: 05-10-2005 17:10

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:VA Zip:

County: PULASKI

Contact:

Phone:() -

Permit Type:Detection

Constituent: TOX Total Organic Halogens, Halides

CAS Number:

MCL: 0.000 ppb

ACL: 0.000 ppb

Detect Limit: 40.000 ppb

Start Date:Mar 31 1996 End Date:Dec 30 1999

Normality Test on Observations for wells listed below:

Well:13MW1 Position:Upgradient Observations:37

 Scale
 Minimum
 Maximum
 Mean
 Std Dev

 Original:
 2.500
 38.000
 10.932
 10.539

 Log:
 0.916
 3.638
 1.874
 1.056

Well:13MW2 Position:Upgradient Observations:37

 Scale
 Minimum
 Maximum
 Mean
 Std Dev

 Original:
 2.500
 54.500
 10.405
 11.289

 Log:
 0.916
 3.998
 1.789
 1.059

Pooled Statistics

Observations: 74

Statistic **Original** Log Scale Scale 10.669 1.831 Mean: Std Dev: 10.849 1.051 Skewness: 1.378* 0.399 Kurtosis: 2.259 -1.616 2.500 Minimum: 0.916 54.500 3.998 Maximum:

CV: 1.017 0.574

Shapiro-Francia Statistics

Test 5% Critical 1% Critical Scale Statistic Value Value Original: 0.7158* 0.9690 0.956

0.9560 Log: 0.7407* 0.9690 0.9560

 $[\]mbox{*}$ Indicates statistically significant evidence of non-normality. GRIT/STAT Version 5.0

Data Set Summary

Report Printed: 05-10-2005 17:10

Facility:RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford County:PULASKI ST:VA Zip:

Contact:

Phone:() -

Permit Type:Detection

Constituent: TOX Total Organic Halogens, Halides

CAS Number:

0.000 ppb 0.000 ppb MCL:

ACL: Detect Limit: 40.000 ppb

Start Date:Mar 31 1996 End Date: Dec 30 1999

Sample Date	Observation	Ln
Mar 31 1996	2.500 ppb	0.916 (* Nondetect *)
Jun 30 1996	2.500 ppb	0.916 (* Nondetect *)
Sep 30 1996	2.500 ppb	0.916 (* Nondetect *)
Dec 31 1996	2.500 ppb	0.916 (* Nondetect *)
Mar 31 1997	2.500 ppb	0.916 (* Nondetect *)
Jun 30 1997	2.500 ppb	0.916 (* Nondetect *)
Sep 30 1997	2.500 ppb	0.916 (* Nondetect *)
Dec 31 1997	9.000 ppb	2.197
Mar 09 1998	2.500 ppb	0.916 (* Nondetect *)
May 14 1998	5.500 ppb	1.705
Aug 14 1998	2.500 ppb	0.916 (* Nondetect *)
Nov 23 1998	25.500 ppb	3.239
Mar 13 1999	2.500 ppb	0.916 (* Nondetect *)
May 27 1999	2.500 ppb	0.916 (* Nondetect *)
Jul 27 1999	6.500 ppb	1.872
Nov 08 1999	14.500 ppb	2.674
Dec 10 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 11 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 12 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 13 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 14 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 15 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 16 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 17 1999	2.500 ppb	0.916 (* Nondetect *)

Observations (N): 37 Nondetects (%ND): 81

 Minimum:
 2.500 ppb
 Ln Minimum:
 0.916

 Maximum:
 38.000 ppb
 Ln Maximum:
 3.638

 Mean:
 10.932 ppb
 Ln Mean:
 1.874

 Std. Dev.:
 10.539 ppb
 Ln Std. Dev.:
 1.056

Comple Data	Observation	Ι
Sample Date Mar 31 1996		Ln 0.016 (* Nondetect *)
Jun 30 1996	2.500 ppb	0.916 (* Nondetect *)
	2.500 ppb	0.916 (* Nondetect *)
Sep 30 1996	2.500 ppb	0.916 (* Nondetect *)
Dec 31 1996	2.500 ppb	0.916 (* Nondetect *)
Mar 31 1997	2.500 ppb	0.916 (* Nondetect *)
Jun 30 1997	2.500 ppb	0.916 (* Nondetect *)
Sep 30 1997	2.500 ppb	0.916 (* Nondetect *)
Dec 31 1997	2.500 ppb	0.916 (* Nondetect *)
Mar 09 1998	2.500 ppb	0.916 (* Nondetect *)
May 14 1998	6.000 ppb	1.792
Aug 14 1998	2.500 ppb	0.916 (* Nondetect *)
Nov 23 1998	7.500 ppb	2.015
Mar 13 1999	2.500 ppb	0.916 (* Nondetect *)
May 27 1999	2.500 ppb	0.916 (* Nondetect *)
Jul 27 1999	2.500 ppb	0.916 (* Nondetect *)
Nov 08 1999	24.500 ppb	3.199
Dec 10 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 11 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 12 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 13 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 14 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 15 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 16 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 17 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 18 1999	20.000 ppb	2.996 (* Nondetect *)
Dec 19 1999	20.000 ppb	2.996 (* Nondetect *)
Dec 20 1999	20.000 ppb	2.996 (* Nondetect *)
Dec 21 1999	20.000 ppb	2.996 (* Nondetect *)
Dec 22 1999	20.000 ppb	2.996 (* Nondetect *)
	- 1	` '

Dec 23 1999	20.000 ppb	2.996 (* Nondetect *)
Dec 24 1999	20.000 ppb	2.996 (* Nondetect *)
Dec 25 1999	20.000 ppb	2.996 (* Nondetect *)
Dec 26 1999	20.000 ppb	2.996 (* Nondetect *)
Dec 27 1999	20.000 ppb	2.996 (* Nondetect *)
Dec 28 1999	20.000 ppb	2.996 (* Nondetect *)
Dec 29 1999	20.000 ppb	2.996 (* Nondetect *)
Dec 30 1999	54.500 ppb	3.998 `

Observations (N): 37 Nondetects (%ND): 89

 Minimum:
 2.500 ppb
 Ln Minimum:
 0.916

 Maximum:
 54.500 ppb
 Ln Maximum:
 3.998

 Mean:
 10.405 ppb
 Ln Mean:
 1.789

 Std. Dev.:
 11.289 ppb
 Ln Std. Dev.:
 1.059

Nonparametric Prediction Interval

Report Printed May 10,2005

Facility:Haz. Waste Unit 13 - RAAP Parameter:Total Organic Halogens, Halides(CAS Number:- -)

ONE-TAILED UPPER PARAMETRIC PREDICTION INTERVAL

Observations (n):

Conf. Level $(1-\alpha)$:

100.000%

54.5 UL: ≥500 ppb

LL: 0.000

1.ND: 85%.

Page 1

Data Set Summary

Report Printed: 05-10-2005 17:13

Facility:RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford County:PULASKI ST:VA Zip:

Contact:

Phone:() -

Permit Type: Detection

Constituent: Cond F Specific Conductivity, Field

CAS Number:

MCL: 0.000 umhos/cm

ACL:

0.000 umhos/cm

Detect Limit:

2.000 umhos/cm

Start Date:Mar 31 1996 End Date:Dec 30 1999

Sample Date	Observation	Ln
Mar 31 1996	707.500 umhos/cm	6.562
Sep 30 1997	717.500 umhos/cm	6.576
Dec 31 1997	692.500 umhos/cm	6.540
Mar 09 1998	660.000 umhos/cm	6.492
May 14 1998	590.000 umhos/cm	6.380
Aug 14 1998	613.000 umhos/cm	6.418
Nov 23 1998	660.000 umhos/cm	6.492
Mar 13 1999	1940.000 umhos/cm	7.570
May 27 1999	6870.000 umhos/cm	8.835
Jul 27 1999	759.000 umhos/cm	6.632
Nov 08 1999	896.000 umhos/cm	6.798
Dec 10 1999	634.000 umhos/cm	6.452
Dec 11 1999	599.000 umhos/cm	6.395
Dec 12 1999	506.000 umhos/cm	6.227
Dec 13 1999	871.000 umhos/cm	6.770
Dec 14 1999	754.000 umhos/cm	6.625
Dec 15 1999	457.000 umhos/cm	6.125
Dec 16 1999	762.000 umhos/cm	6.636
Dec 17 1999	730.000 umhos/cm	6.593
Dec 18 1999	732.000 umhos/cm	6.596
Dec 19 1999	665.000 umhos/cm	6.500
Dec 20 1999	733.000 umhos/cm	6.597
Dec 21 1999	729.000 umhos/cm	6.592
Dec 23 1999	430.000 umhos/cm	6.064

490.000 umhos/cm	6.194
640.000 umhos/cm	6.461
690.000 umhos/cm	6.537
440.000 umhos/cm	6.087
610.000 umhos/cm	6.413
620.000 umhos/cm	6.430
720.000 umhos/cm	6.579
	640.000 umhos/cm 690.000 umhos/cm 440.000 umhos/cm 610.000 umhos/cm 620.000 umhos/cm

Observations (N): 31 Nondetects (%ND): 0

 Minimum:
 430.000 umhos/cm
 Ln Minimum:
 6.064

 Maximum:
 6870.000 umhos/cm
 Ln Maximum:
 8.835

 Mean:
 900.564 umhos/cm
 Ln Mean:
 6.586

 Std. Dev.:
 1136.958 umhos/cm
 Ln Std. Dev.:
 0.495

Well ID:13MW2

Sample Date	Observation	Ln
Mar 31 1996	582.500 umhos/cm	6.367
Sep 30 1997	567.500 umhos/cm	6.341
Dec 31 1997	570.000 umhos/cm	6.346
Mar 09 1998	568.000 umhos/cm	6.342
May 14 1998	573.000 umhos/cm	6.351
Aug 14 1998	553.000 umhos/cm	6.315
Nov 23 1998	560.000 umhos/cm	6.328
Mar 13 1999	500.000 umhos/cm	6.215
May 27 1999	5810.000 umhos/cm	8.667
Jul 27 1999	589.000 umhos/cm	6.378
Nov 08 1999	687.000 umhos/cm	6.532
Dec 10 1999	495.000 umhos/cm	6.205
Dec 11 1999	568.000 umhos/cm	6.342
Dec 12 1999	601.000 umhos/cm	6.399
Dec 13 1999	689.000 umhos/cm	6.535
Dec 14 1999	618.000 umhos/cm	6.426
Dec 15 1999	574.000 umhos/cm	6.353
Dec 16 1999	613.000 umhos/cm	6.418
Dec 17 1999	617.000 umhos/cm	6.425
Dec 18 1999	612.000 umhos/cm	6.417
Dec 19 1999	648.000 umhos/cm	6.474
Dec 20 1999	610.000 umhos/cm	6.413
Dec 21 1999	621.000 umhos/cm	6.431
Dec 23 1999	630.000 umhos/cm	6.446
Dec 24 1999	670.000 umhos/cm	6.507
Dec 25 1999	600.000 umhos/cm	6.397
Dec 26 1999	750.000 umhos/cm	6.620
Dec 27 1999	450.000 umhos/cm	6.109
Dec 28 1999	550.000 umhos/cm	6.310
Dec 29 1999	670.000 umhos/cm	6.507
Dec 30 1999	710.000 umhos/cm	6.565

Well ID:13MW2 Summary Statistics

Observations (N): 31 Nondetects (%ND): 0

450.000 umhos/cm 6.109 Minimum: Ln Minimum: Maximum:

Mean: 769.548 umhos/cm Ln Mean: Std. Dev.: 937.607 umhos/cm Ln Std. Dev.: 0.422

Normality Tests

Report Printed: 05-10-2005 17:12

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:VA Zip:

County:PULASKI

Contact:

Phone:() -

Permit Type: Detection

Constituent: Cond F Specific Conductivity, Field

CAS Number:

Number: -

MCL: 0.000 umhos/cm

ACL:

0.000 umhos/cm

Detect Limit:

2.000 umhos/cm

Start Date:Mar 31 1996 End Date:Dec 30 1999

Normality Test on Observations for wells listed below:

Well:13MW1 Position:Upgradient Observations:31

Scale Minimum Maximum Mean Std Dev Original: 430.000 6870.000 900.564 1136.958

Log: 6.064 8.835 6.586 0.495

Well:13MW2 Position:Upgradient Observations:31

Scale Minimum Maximum Mean Std Dev Original: 450.000 5810.000 769.548 937.607

Log: 6.109 8.667 6.467 0.422

Pooled Statistics

Observations: 62

Original Statistic Log Scale Scale Mean: 835.056 6.527 Std Dev: 1035.592 0.4605.111* 3.858* Skewness: **Kurtosis:** 25.116 15.873 Minimum: 430.000 6.064

Maximum: 6870.000 8.835

CV: 1.240 0.071

Shapiro-Francia Statistics

Test 5% Critical 1% Critical Scale Statistic Value Value Original: 0.2489* Log: 0.5030* 0.9640 0.9470 0.9640 0.9470

^{*} Indicates statistically significant evidence of non-normality. GRIT/STAT Version 5.0

Nonparametric Prediction Interval Report Printed May 10,2005

Page 1

Facility:Haz. Waste Unit 13 - RAAP Parameter:Specific Conductivity, Field(CAS Number:- -)

ONE-TAILED UPPER PARAMETRIC PREDICTION INTERVAL

Observations (n):

62

Conf. Level $(1-\alpha)$:

100.000%

UL: 430.000 umhos/cm

1, ND: 0

Data Set Summary

Report Printed: 05-10-2005 17:13

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:VA Zip: County:PULASKI

Contact:

Phone:() -

Permit Type:Detection

Constituent:pH F pH, Field

CAS Number:

MCL: 0.000 SU

ACL: 0.000 SU

Detect Limit: 0.100 SU

Start Date:Mar 31 1996 End Date:Dec 30 1999

Sample Date	Observation		Ln
Mar 31 1996	7.100 SU		1.960
Sep 30 1997	7.200 SU		1.974
Dec 31 1997	7.200 SU		1.974
Mar 09 1998	6.700 SU		1.902
May 14 1998	6.300 SU		1.841
Aug 14 1998	6.500 SU		1.872
Nov 23 1998	7.000 SU		1.946
Mar 13 1999	6.700 SU		1.902
May 27 1999			1.944
Jul 27 1999	7.030 SU		1.950
Nov 08 1999			1.939
Dec 10 1999	6.820 SU		1.920
Dec 11 1999	6.600 SU		1.887
Dec 12 1999	6.390 SU		1.855
Dec 13 1999	5.720 SU		1.744
Dec 14 1999	7.010 SU		1.947
Dec 15 1999	6.480 SU		1.869
Dec 16 1999	6.520 SU		1.875
Dec 17 1999	6.690 SU	(S)	1.901
Dec 18 1999	6.940 SU		1.937
Dec 19 1999	6.570 SU	/	1.883
Dec 19 1999 Dec 20 1999	6.550 SU	/	
		1	1.879
Dec 21 1999	6.650 SU		1.895
Dec 23 1999	6.670 SU		1.898

Dec 24 1999	6.400 SU	1.856
Dec 25 1999	6.930 SU	1.936
Dec 26 1999	6.640 SU	1.893
Dec 27 1999	6.720 SU	1.905
Dec 28 1999	6.470 SU	1.867
Dec 29 1999	7.020 SU	1.949
Dec 30 1999	7.250 SU	1.981

Observations (N): 31 Nondetects (%ND): 0

> Minimum: 5.720 SU Ln Minimum: 1.744 Ln Maximum: Maximum: 7.250 SU 1.981 Mean: 6.733 SU Ln Mean: 1.906 Std. Dev.: 0.323 SU Ln Std. Dev.: 0.049

Sample Date	Observation	Ln
Mar 31 1996	7.400 SU	2.001
Sep 30 1997	7.800 SU	2.054
Dec 31 1997		1.974
Mar 09 1998	6.800 SU	1.917
May 14 1998	6.700 SU	1.902
Aug 14 1998	6.700 SU	1.902
Nov 23 1998	7.100 SU	1.960
Mar 13 1999	7.700 SU	2.041
May 27 1999		1.971
Jul 27 1999	7.170 SU	1.970
Nov 08 1999		1.959
Dec 10 1999	6.910 SU	1.933
Dec 11 1999	6.960 SU	1.940
Dec 12 1999	6.710 SU	1.904
Dec 13 1999	6.200 SU	1.825
Dec 14 1999	7.090 SU	1.959
Dec 15 1999	6.830 SU	1.921
Dec 16 1999	6.670 SU	1.898
Dec 17 1999	6.790 SU	1.915
Dec 18 1999	7.060 SU	1.954
Dec 19 1999	6.840 SU	1.923
Dec 20 1999	6.670 SU	1.898
Dec 21 1999	6.710 SU	1.904
Dec 23 1999	7.130 SU	1.964
Dec 24 1999	7.030 SU	1.950
Dec 25 1999	7.070 SU	1.956
Dec 26 1999	7.020 SU	1.949
Dec 27 1999	7.090 SU	1.959
Dec 28 1999	7.220 SU	1.977
Dec 29 1999	6.970 SU	1.942
Dec 30 1999	7.500 SU	2.015

Observations (N): 31 Nondetects (%ND): 0

6.200 SU 7.800 SU Minimum: Ln Minimum: 1.825 Maximum: Ln Maximum: 2.054 Ln Mean: 1.946

7.010 SU 0.322 SU Mean: Std. Dev.: Ln Std. Dev.: 0.046

Normality Tests

Report Printed: 05-10-2005 17:14

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:

ST:VA Zip:

County:PULASKI

Contact:

Phone:() -

Permit Type: Detection

Constituent:pH F pH, Field

CAS Number:

MCL:

0.000 SU

ACL:

 $0.000~\mathrm{SU}$

Detect Limit:

0.100 SU

Start Date:Mar 31 1996 End Date:Dec 30 1999

Normality Test on Observations for wells listed below:

Well:13MW1 Position: Upgradient Observations:31

 Scale
 Minimum
 Maximum
 Mean
 Std Dev

 Original:
 5.720
 7.250
 6.733
 0.323

 Log:
 1.744
 1.981
 1.906
 0.049

Well:13MW2 Position:Upgradient Observations:31

 Scale
 Minimum
 Maximum
 Mean
 Std Dev

 Original:
 6.200
 7.800
 7.010
 0.322

 Log:
 1.825
 2.054
 1.946
 0.046

Pooled Statistics

Observations: 62

Statistic Original Log Scale Scale Mean: 6.871 1.926 Std Dev: 0.349 0.051 Skewness: -0.187-0.447**Kurtosis:** 1.327 1.708 Minimum: 5.720 1.744 7.800 Maximum: 2.054 CV: 0.051 0.027

Shapiro-Francia Statistics

Test 5% Critical 1% Critical

 Scale Statistic
 Value
 Value

 Original:
 0.9566*
 0.9640
 0.9470

 Log:
 0.9489*
 0.9640
 0.9470

^{*} Indicates statistically significant evidence of non-normality. GRIT/STAT Version 5.0

Nonparametric Prediction Interval

Report Printed May 10,2005

Facility:Haz. Waste Unit 13 - RAAP Parameter:pH, Field(CAS Number:- -)

TWO-TAILED PARAMETRIC PREDICTION INTERVAL

Observations (n):

Conf. Level $(1-\alpha)$:

62 100.000%

UL: 6-930 SU 7.80 SU LL: 6.910 SU 5.72 SU Page 1

Data Set Summary

Report Printed: 05-10-2005 17:17

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:VA Zip: County:PULASKI

Contact:
Phone:() -

Permit Type: Detection

Constituent: Nitrate Nitrate

CAS Number: 14797-55-8

MCL: 0.000 ppb

ACL: 0.000 ppb

Detect Limit: 100.000 ppb

Start Date:Mar 31 1996 End Date:Dec 30 1999

Well ID:13MW1

Sample Date	Observation	Ln
Mar 31 1996	700.000 ppb	6.551
Jun 30 1996	700.000 ppb	6.551
Sep 30 1996	500.000 ppb	6.215
Dec 31 1996	600.000 ppb	6.397
Mar 31 1997	700.000 ppb	6.551
Jun 30 1997	700.000 ppb	6.551
Sep 30 1997	900.000 ppb	6.802
Dec 31 1997	700.000 ppb	6.551
Mar 09 1998	480.000 ppb	6.174
May 14 1998	360.000 ppb	5.886
Aug 14 1998	440.000 ppb	6.087
Nov 23 1998	560.000 ppb	6.328
Mar 13 1999	410.000 ppb	6.016
May 27 1999	230.000 ppb	5.438
Jul 27 1999	380.000 ppb	5.940
Nov 08 1999	430.000 ppb	6.064
Dec 10 1999	430.000 ppb	6.064
Dec 11 1999	130.000 ppb	4.868
Dec 12 1999	900.000 ppb	6.802
Dec 13 1999	310.000 ppb	5.737
Dec 14 1999	320.000 ppb	5.768
Dec 15 1999	150.000 ppb	5.011
Dec 16 1999	380.000 ppb	5.940
Dec 17 1999	400.000 ppb	5.991

Dec 18 1999	340.000 ppb	5.829
Dec 19 1999	250.000 ppb	5.521
Dec 20 1999	260.000 ppb	5.561
Dec 21 1999	380.000 ppb	5.940
Dec 22 1999	300.000 ppb	5.704
Dec 23 1999	300.000 ppb	5.704
Dec 24 1999	50.000 ppb	3.912 (* Nondetect *)

Well ID:13MW1 Summary Statistics

Observations (N): 31 Nondetects (%ND): 3

 Minimum:
 50.000 ppb
 Ln Minimum:
 3.912

 Maximum:
 900.000 ppb
 Ln Maximum:
 6.802

 Mean:
 441.613 ppb
 Ln Mean:
 5.950

 Std. Dev.:
 212.259 ppb
 Ln Std. Dev.:
 0.600

Well ID:13MW2

Sample Date	Observation	Ln
Mar 31 1996	600.000 ppb	6.397
Jun 30 1996	800.000 ppb	6.685
Sep 30 1996	700.000 ppb	6.551
Dec 31 1996	800.000 ppb	6.685
Mar 31 1997	700.000 ppb	6.551
Jun 30 1997	900.000 ppb	6.802
Sep 30 1997	700.000 ppb	6.551
Dec 31 1997	600.000 ppb	6.397
Mar 09 1998	790.000 ppb	6.672
May 14 1998	380.000 ppb	5.940
Aug 14 1998	640.000 ppb	6.461
Nov 23 1998	600.000 ppb	6.397
Mar 13 1999	710.000 ppb	6.565
May 27 1999	860.000 ppb	6.757
Jul 27 1999	890.000 ppb	6.791
Nov 08 1999	920.000 ppb	6.824
Dec 10 1999	50.000 ppb	3.912 (* Nondetect *)
Dec 11 1999	920.000 ppb	6.824
Dec 12 1999	1050.000 ppb	6.957
Dec 13 1999	1360.000 ppb	7.215
Dec 14 1999	1200.000 ppb	7.090
Dec 15 1999	1160.000 ppb	7.056
Dec 16 1999	1190.000 ppb	7.082
Dec 17 1999	710.000 ppb	6.565
Dec 18 1999	920.000 ppb	6.824
Dec 19 1999	750.000 ppb	6.620
Dec 20 1999	580.000 ppb	6.363
Dec 22 1999	800.000 ppb	6.685
Dec 23 1999	700.000 ppb	6.551
Dec 24 1999	441.000 ppb	6.089

Well ID:13MW2 Summary Statistics

Observations (N): 30

Nondetects (%ND): 3

Ln Minimum: 3.9 Ln Maximum: 7 Mean: 6.562 Minimum: 50.000 ppb Maximum: 1360.000 ppb Mean: 780.700 ppb Std. Dev.: 262.094 ppb 3.912 7.215

Mean: Std. Dev.: Ln Std. Dev.: 0.574

Normality Tests

Report Printed: 05-10-2005 17:17

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford

ST:VA Zip:

County:PULASKI

Contact:

Phone:() -

Permit Type: Detection

Constituent: Nitrate Nitrate

CAS Number: 14797-55-8

MCL:

0.000 ppb

ACL:

0.000 ppb

Detect Limit:

100.000 ppb

Start Date: Mar 31 1996 End Date:Dec 30 1999

Normality Test on Observations for wells listed below:

Well:13MW1

Position: Upgradient Observations: 31

Scale

Minimum 50.000

Maximum 900.000

Mean 441.613 212.259

Original: Log:

3.912

6.802

5.950

0.600

Std Dev

Well:13MW2

Position: Upgradient Observations: 30

Scale Original: Minimum 50.000

Maximum 1360.000

Mean 780.700

Std Dev 262.094

Log:

3.912

7.215

6.562

0.574

Pooled Statistics

Observations: 61

Statistic

Original Log

Scale Scale

Mean:

608.377

6.251

Std Dev:

291.453

0.659

Skewness: **Kurtosis:**

0.269 -0.285

-1.602* 3.355

Minimum: Maximum:

50.000 1360.000 3.912 7.215 CV: 0.479 0.105

Shapiro-Francia Statistics

Test 5% Critical 1% Critical
Scale Statistic Value Value
Original: 0.9813 0.9630 0.9470
Log: 0.8553* 0.9630 0.9470

^{*} Indicates statistically significant evidence of non-normality. GRIT/STAT Version 5.0

```
Facility: Haz. Waste Unit 13 - RAAP
```

Parameter: Nitrate (CAS Number: 14797-55-8)

ONE-TAILED UPPER PARAMETRIC PREDICTION INTERVAL

```
Observations (n):
                                 61
Shapiro-Francia
                     (W):
                            0.9813
  Critical W,\alpha = 0.01:
                            0.9470
                   Mean:
                           608.377 ppb
                           291.453 ppb
                Std Dev:
                      DF:
                                 60
  Conf. Level (1-\alpha):
                           0.9500
 Future Samples (k):
                                  5
           t-1-α-:
                              2.3901
                  Kappa:
                              2.4096
                      UL: 1310.672 ppb
                      LL: -∞
                 Y.ND: 3%.
```

Data Set Summary

Report Printed: 05-10-2005 17:19

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:VA Zip: County:PULASKI

Contact:
Phone:() -

Permit Type: Detection

Constituent: Nitrite Nitrite

CAS Number: 14797-65-0
MCL: 0.000 ppb
ACL: 0.000 ppb
Detect Limit: 10.000 ppb

Start Date:Mar 31 1996 End Date:Dec 30 1999

Well ID:13MW1

Sample Date	Observation	Ln
Mar 31 1996	5.000 ppb	1.609 (* Nondetect *)
Jun 30 1996	5.000 ppb	1.609 (* Nondetect *)
Sep 30 1996	5.000 ppb	1.609 (* Nondetect *)
Dec 31 1996	5.000 ppb	1.609 (* Nondetect *)
Mar 31 1997	5.000 ppb	1.609 (* Nondetect *)
Jun 30 1997	5.000 ppb	1.609 (* Nondetect *)
Sep 30 1997	5.000 ppb	1.609 (* Nondetect *)
Dec 31 1997	5.000 ppb	1.609 (* Nondetect *)
Mar 09 1998	5.000 ppb	1.609 (* Nondetect *)
May 14 1998		1.609 (* Nondetect *)
Aug 14 1998	5.000 ppb	1.609 (* Nondetect *)
Nov 23 1998	5.000 ppb	1.609 (* Nondetect *)
Mar 13 1999	5.000 ppb	1.609 (* Nondetect *)
May 27 1999	1.1	1.609 (* Nondetect *)
Jul 27 1999	5.000 ppb	1.609 (* Nondetect *)
Nov 08 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 10 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 11 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 12 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 13 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 14 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 15 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 16 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 17 1999	5.000 ppb	1.609 (* Nondetect *)

Dec 18 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 19 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 20 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 21 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 22 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 23 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 24 1999	5.000 ppb	1.609 (* Nondetect *)

Well ID:13MW1 Summary Statistics

Observations (N): 31 Nondetects (%ND):100

 Minimum:
 5.000 ppb
 Ln Minimum:
 1.609

 Maximum:
 5.000 ppb
 Ln Maximum:
 1.609

 Mean:
 5.000 ppb
 Ln Mean:
 1.609

 Std. Dev.:
 0.000 ppb
 Ln Std. Dev.:
 0.000

Well ID:13MW2

Sample Date	Observation	Ln
Mar 31 1996	5.000 ppb	1.609 (* Nondetect *)
Jun 30 1996	5.000 ppb	1.609 (* Nondetect *)
Sep 30 1996	5.000 ppb	1.609 (* Nondetect *)
Dec 31 1996	5.000 ppb	1.609 (* Nondetect *)
Mar 31 1997	5.000 ppb	1.609 (* Nondetect *)
Jun 30 1997	5.000 ppb	1.609 (* Nondetect *)
Sep 30 1997	5.000 ppb	1.609 (* Nondetect *)
Dec 31 1997	5.000 ppb	1.609 (* Nondetect *)
Mar 09 1998	5.000 ppb	1.609 (* Nondetect *)
May 14 1998	5.000 ppb	1.609 (* Nondetect *)
Aug 14 1998	5.000 ppb	1.609 (* Nondetect *)
Nov 23 1998	5.000 ppb	1.609 (* Nondetect *)
Mar 13 1999	5.000 ppb	1.609 (* Nondetect *)
May 27 1999	5.000 ppb	1.609 (* Nondetect *)
Jul 27 1999	5.000 ppb	1.609 (* Nondetect *)
Nov 08 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 10 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 11 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 12 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 13 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 14 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 15 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 16 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 17 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 18 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 19 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 20 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 22 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 23 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 24 1999	5.000 ppb	1.609 (* Nondetect *)

Well ID:13MW2 Summary Statistics

Observations (N): 30

Nondetects (%ND):100

5.000 ppb 5.000 ppb 5.000 ppb 0.000 ppb Ln Minimum: Ln Maximum: 1.609 1.609 Minimum: Maximum: Mean:

1.609 0.000 Ln Mean: Ln Std. Dev.: Std. Dev.:

Data Set Summary

Report Printed: 05-10-2005 17:19

Facility:RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford County:PULASKI ST:VA Zip:

Contact:

Phone:() -

Permit Type: Detection

Constituent: Sulfate Sulfate, total

CAS Number: 14808-79-8 MCL: 0.000 ppb

ACL: 0.000 ppb 1000.000 ppb Detect Limit:

Start Date:Mar 31 1996 End Date: Dec 30 1999

Well ID:13MW1

Sample Date	Observation	Ln
Mar 31 1996	88000.000 ppb	11.385 11.339
Jun 30 1996	84000.000 ppb	11.339
Sep 30 1996	80000.000 ppb	11.290
Dec 31 1996	82000.000 ppb	11.314
Mar 31 1997	70000.000 ppb	11.156
Jun 30 1997	64000.000 ppb	11.067
Sep 30 1997	73000.000 ppb	11.198
Dec 31 1997	79000.000 ppb	11.277
Mar 09 1998	73900.000 ppb	11.210
May 14 1998	61500.000 ppb	11.027
Aug 14 1998	64100.000 ppb	11.068
Nov 23 1998	73300.000 ppb	11.202
Mar 13 1999	65000.000 ppb	11.082
May 27 1999	53900.000 ppb	10.895
Jul 27 1999	68500.000 ppb	11.135
Nov 08 1999	61700.000 ppb	11.030
Dec 10 1999	65000.000 ppb	11.082
Dec 11 1999	47500.000 ppb	10.768
Dec 12 1999	39800.000 ppb	10.592
Dec 13 1999	59600.000 ppb	10.995
Dec 14 1999	59100.000 ppb	10.987
Dec 15 1999	34700.000 ppb	10.454
Dec 16 1999	58300.000 ppb	10.973
Dec 17 1999	64900.000 ppb	11.081
	~ ~	

Dec 18 1999	65000.000 ppb	11.082
Dec 19 1999	49200.000 ppb	10.804
Dec 20 1999	62900.000 ppb	11.049
Dec 21 1999	65000.000 ppb	11.082
Dec 22 1999	50100.000 ppb	10.822
Dec 23 1999	40900.000 ppb	10.619
Dec 24 1999	38900.000 ppb	10.569

Well ID:13MW1 Summary Statistics

Observations (N): 31 Nondetects (%ND): 0

 Minimum:
 34700.000 ppb
 Ln Minimum:
 10.454

 Maximum:
 88000.000 ppb
 Ln Maximum:
 11.385

 Mean:
 62670.957 ppb
 Ln Mean:
 11.020

 Std. Dev.:
 13583.912 ppb
 Ln Std. Dev.:
 0.235

Well ID:13MW2

Sample Date	Observation	Ln
Mar 31 1996	32000.000 ppb	10.373
Jun 30 1996	31000.000 ppb	10.342
Sep 30 1996	28000.000 ppb	10.240
Dec 31 1996	27000.000 ppb	10.204
Mar 31 1997	24000.000 ppb	10.086
Jun 30 1997	24000.000 ppb	10.086
Sep 30 1997	26000.000 ppb	10.166
Dec 31 1997	29000.000 ppb	10.275
Mar 09 1998	30300.000 ppb	10.319
May 14 1998	30700.000 ppb	10.332
Aug 14 1998	26900.000 ppb	10.200
Nov 23 1998	27500.000 ppb	10.222
Mar 13 1999	26200.000 ppb	10.174
May 27 1999	22400.000 ppb	10.017
Jul 27 1999	23100.000 ppb	10.048
Nov 08 1999	24400.000 ppb	10.102
Dec 10 1999	25700.000 ppb	10.154
Dec 11 1999	22200.000 ppb	10.008
Dec 12 1999	27300.000 ppb	10.215
Dec 13 1999	23400.000 ppb	10.060
Dec 14 1999	26300.000 ppb	10.177
Dec 15 1999	31800.000 ppb	10.367
Dec 16 1999	22700.000 ppb	10.030
Dec 17 1999	24100.000 ppb	10.090
Dec 18 1999	29900.000 ppb	10.306
Dec 19 1999	28300.000 ppb	10.251
Dec 20 1999	28500.000 ppb	10.258
Dec 22 1999	34100.000 ppb	10.437
Dec 23 1999	48800.000 ppb	10.795
Dec 24 1999	32800.000 ppb	10.398

Well ID:13MW2 Summary Statistics

Observations (N): 30

Nondetects (%ND): 0

Minimum: 22200.000 ppb Maximum: 48800.000 ppb Mean: 27946.664 ppb Std. Dev.: 5141.363 ppb Ln Minimum: 10.008 Ln Maximum: 10.795 Ln Mean: 10.224

10.224 0.162 Ln Std. Dev.:

Normality Tests

Report Printed: 05-10-2005 17:19

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford

ST:VA Zip:

County: PULASKI

Contact:

Phone:() -

Permit Type: Detection

Constituent: Sulfate Sulfate, total

CAS Number: 14808-79-8

MCL: ACL:

0.000 ppb 0.000 ppb

Detect Limit:

1000.000 ppb

Start Date: Mar 31 1996 End Date: Dec 30 1999

Normality Test on Observations for wells listed below:

Position: Upgradient Observations: 31 Well:13MW1

Scale Original:

Minimum 34700.000

Maximum 88000.000

Mean 62670.957

Std Dev 13583.912

Log:

10.454

11.385

11.020

0.235

Well:13MW2

Position: Upgradient Observations: 30

Scale Original:

Minimum 22200.000

Maximum 48800.000

Mean 27946.664

Std Dev 5141.363

Log:

10.008

10.795

10.224

0.162

Pooled Statistics

Statistic

Observations:

61

Original

Log

Scale 45593.438

Scale 10.629

Mean: Std Dev:

20283.574

0.449

Skewness:

0.447

0.144

Kurtosis:

-1.25322200.000

-1.55110.008

Minimum: Maximum:

88000.000

11.385

CV: 0.445 0.042

Shapiro-Francia Statistics

Test 5% Critical 1% Critical Scale Statistic Value Value Original: 0.8955* Log: 0.9128* 0.9630 0.9470 0.9630 0.9470

^{*} Indicates statistically significant evidence of non-normality. GRIT/STAT Version 5.0

Nonparametric Prediction Interval Report Printed May 10,2005

Page 1

Facility:Haz. Waste Unit 13 - RAAP Parameter:Sulfate, total(CAS Number:14808-79-8)

ONE-TAILED UPPER PARAMETRIC PREDICTION INTERVAL

Observations (n): Conf. Level $(1-\alpha)$:

61

100.000%

UL: 22200.000 ppb LL: 0.000

1/ND: 0

Data Validation Summary
Second Quarter 2009 Groundwater Monitoring Event
Appendix IX Groundwater Monitoring Event
Open Burning Ground-Hazardous Waste Management Unit 13 (HWMU 13)
Radford Facility Army Ammunition Plant, Radford, Virginia
EPA ID# VA1210020730

Draper Aden Associates performed a comprehensive manual review of the analytical results for the Second Quarter 2009 semiannual Appendix IX groundwater monitoring event at the Open Burning Ground (HWMU 13) located at the Radford Facility Army Ammunition Plant (RFAAP) in Radford, Virginia. The following information and attached table summarize the data validation results.

Sample Collection/Analytical Services

Draper Aden Associates, of Blacksburg, Virginia, collected groundwater samples during April 13 and 14, 2009.

Draper Aden Associates sent the samples via courier to CompuChem, a Division of Liberty Analytical, of Cary, North Carolina, Lancaster Laboratories, of Lancaster, Pennsylvania, TestAmerica North Canton, North Canton, Ohio and TestAmerica Sacramento, Sacramento, California. The chain of custody and permit required target analytes for each laboratory is provided as an attachment.

The laboratory analyzed the sulfide samples one day outside of the 7-day holding time requirement. Alliant Techsystems Inc. resampled the point of compliance wells for sulfide on June 17, 2009; however, the data for the June 17, 2009 samples were suspect due to laboratory errors. As a result, the VDEQ instructed Alliant to resample the point of compliance wells for sulfide during the upcoming Fourth Quarter 2009 semiannual monitoring event. The results are provided under separate cover.

Receipt of Monitoring Event Data

On behalf of Alliant Techsystems Inc., each laboratory submitted results to Draper Aden Associates in a final certificate of analysis which included analytical results as well as relevant documentation to verify and validate the results. Some revisions to the certificate of analysis for the event were received on June 4, 2009 and all final results were received on August 11, 2009.

Verification Events

Trichlorofluoromethane (0.3 J μ g/l) and 1,1,1-trichloroethane (0.1 J μ g/l) were detected less than the QL in 13MW3 by SW-846 Method 8260B. A verification sampling event was conducted on June 17, 2009 to refute or confirm the reported detection. 1,1,1-Trichloroethane in sample

Pulse Find Birth, deby Coast Caston Work/Salvage Obd. Low-Rel Evaluation of House OBG GW-202009 SUMMAPS IS E

13MW3 was not detected by Lancaster Laboratories, Lancaster, PA (SDG RAD19 received on July 17, 2009). Trichlorofluoromethane and 1,1,1-trichloroethane in sample 13MW3 were not confirmed by TestAmerica, North Canton, Ohio (Lot # A9F180214 received on July 8, 2009). The verification result for 1,1,1-trichloroethane in sample 13MW3 (Lancaster) was reported as the final result. The verification result for trichlorofluoromethane in sample 13MW3 (TestAmerica) was reported as the final result.

Additionally Detected Appendix IX Target Analytes

None.

Data Validation/Data Presentation

Draper Aden Associates performed a comprehensive review of the analytical results as presented on the attached data validation reports and summary table. For the Appendix IX monitoring event, sample results were reported by the laboratory and validated to at or above the method detection limit. A reported value for a target analyte detected between the MDL and the quantitation limit (QL) should be considered an estimated concentration.

Detection limits and quantitation limits are presented on the Data Validation Report Summary Table.

Sample/blind field duplicate results (13MW4 and 13MWDUP) are presented on the Data Validation Report Summary Table.

No results were rejected based on the data validation criteria except for sulfide noted above.

The data validation results are summarized on the attached reports and table. A summary of the required methods of analysis is provided below.

Summary of Required Analyses

Summury of Required Analyses								
Analytical Method/ Well ID	13MW1	13MW2	13MW3	13MW4	13MWDUP (13MW4 Duplicate)	13MW5	13MW6	13MW7
Permit Required 8260B Volatiles	X	X	X	X	X	X	X	X
Permit Required 8270C Semivolatiles	X	X	X	X	X	X	X	X
Permit Required 6010B Inorganics	Х	X	X	X	X	X	X	X
Permit Required 7470 Mercury	X	X	X	X	X	X	X	X
Permit Required 314.0 Perchlorate	X	X	X	X	X	X	X	X
Permit Required 8330 Explosives	X	X	X	X	X	X	X	X
Permit Required 8332 Nitroglycerin	X	X	X	X	X	X	X	X
Full Appendix IX Analytes			X	X	X	X	X	X

Note:

- 13MW1 and 13MW2 background monitoring wells.
- X Denotes analysis required.
- Permit Required denotes Compliance Monitoring List as presented in the Class 3 Permit Module currently under VDEQ review.

LIMITATIONS:

Draper Aden Associates prepared this document (which may include drawings, specifications, reports, studies and attachments) in accordance with the agreement between Draper Aden Associates and the client.

The standard of care for all professional engineering, environmental and surveying and related services performed or furnished by Draper Aden Associates under this Agreement are the care and skill ordinarily used by members of these professions practicing under similar circumstances at the same time and in the same locality. Draper Aden Associates makes no warranties, express or implied, under this Agreement in connection with Draper Aden Associates' services.

Conclusions presented are based upon a review of available information, the results of our field studies, and/or professional judgment. To the best of our knowledge, information provided by others is true and accurate, unless otherwise noted.

Draper Aden Associates' liability, hereunder, shall be limited to amounts due Draper Aden Associates for services actually rendered, or reimbursable expenses actually incurred.

Any reuse or modification of any of the aforementioned documents (whether hard copies or electronic transmittals) prepared by Draper Aden Associates without written verification or adaptation by Draper Aden Associates will be at the sole risk of the individual or entity utilizing said documents and such use is without the authorization of Draper Aden Associates. Draper Aden Associates shall have no legal liability resulting from any and all claims, damages, losses, and expenses, including attorney's fees arising out of the unauthorized reuse or modification of these documents. Client shall indemnify Draper Aden Associates from any claims arising out of unauthorized use or modification of the documents whether hard copy or electronic.

Draper Aden Associates
Engineering & Surveying & Environmental Services

This Report has been prepared by:

Janet C. Frazier

Senior Environmental Scientist

2206 South Main Street

Blacksburg, Virginia 24060

540-552-0444,

Jfrazier@daa.com

www.daa.com

2.2.10

Date:

This Report has been subjected to technical and quality review by:

Srikanth Nathella, P.E.,

Project Engineer

2206 South Main Street

Blacksburg, Virginia 24060

540-552-0444

snathella@daa.com

www.daa.com

Date:

2-2-10

		:	:	7	ē	
Analyte	Sample ID	Kesult (ug/L) Q	Result (ug/L) Q	(ug/L)	UL (ng/L)	Validation Notes
Method: 6020						
Laboratory: CompuCl	CompuChem, a Division of Liberty Analytical,	n of Liberty A	Analytical, Cary, NC	NC		
Tin	13MWDUP	2.1 U	ı u	10	2.1	Target analyte not detected at or above the detection limit. MS/MSD recovered low (58%), Field duplicate for 13MW4.
Zinc	13MW4	3.1 B	3.1 J	5	2.7	Result < QL.
	13MW6	2.8 B	2.8 J	5	2.7	Result $<$ QL .
	13MW7	8.9	8.9	5	2.7	No action taken.
	13MWDUP	2.8 B	2.8 J	5	2.7	Result < QL. Field duplicate for 13MW4.
Method: 8260B						
Laboratory: Lancaster Laboratories, Lancaster, PA	r Laboratories	s, Lancaster, I	P4			
Acrolein	13MW3	5 U	U J	25	5	Target analyte not detected at or above the detection limit. QL estimated due to sample pH<2.
	13MW4	s U	l U	25	5	Target analyte not detected at or above the detection limit. QL estimated due to sample pH<2.
	13MW5	5 U	U J	25	5	Target analyte not detected at or above the detection limit. QL estimated due to sample pH<2.
	13MW6	s U	U J	25	5	Target analyte not detected at or above the detection limit. QL estimated due to sample pH<2.
	13MW7	5 U	U J	25	5	Target analyte not detected at or above the detection limit. QL estimated due to sample pH<2.
	13MWDUP	5 U	U J	25	5	Target analyte not detected at or above the detection limit. QL estimated due to sample pH<2.
Carbon tetrachloride	13MW3	9.9	6.6 J	0.5	0.1	MS/MSD recovered high (148%).
	13MW5	0.1 J	0.1 J	0.5	0.1	Result < QL. MS/MSD recovered high (148%).
Chloroform	13MW3	9.0	0.6 J	0.5	0.1	MS/MSD recovered high (142%).
trans-1,4-Dichloro-2-butene	13MW3	1 U	u J	5	_	Target analyte not detected at or above the detection limit. Percent drift requirement of +/- 25% exceeded (28%D).
	13MW4	1 U	l U	S		Target analyte not detected at or above the detection limit. Percent drift requirement of +/- 25% exceeded (28%D).
	13MW5	1 U	U J	5	_	Target analyte not detected at or above the detection limit. Percent drift requirement of +/- 25% exceeded (28%D).
	13MW6	1 U	U J	5	_	Target analyte not detected at or above the detection limit. Percent drift requirement of +/- 25% exceeded (28%D).
	13MW7	1 U	U J	S		Target analyte not detected at or above the detection limit. Percent drift requirement of +/- 25% exceeded (28%D).
	13MWDUP	1 U	U J	S		Target analyte not detected at or above the detection limit. Percent drift requirement of +/- 25% exceeded (28%D).
Tetrachloroethene	13MW7	0.1 J	0.1 J	0.5	0.1	Result < QL. MS/MSD recovered high (136%).
Trichloroethene	13MW3	1	1 J	0.5	0.1	MS/MSD recovered high (143%).
	13MW4	1.5	1.5 J	0.5	0.1	MS/MSD recovered high (143%). Blind field duplicate 13MWDUP result is 1.5 ug/l. RPD between results is <1.
	13MW7	1.4	1.4	0.5	0.1	MS/MSD recovered high (143%).
	13MWDUP	1.5	1.5 J	0.5	0.1	MS/MSD recovered high (143%). Blind field duplicate for 13MW4. RPD between results is <1.

Monitoring Event: Second Quarter 2009 Comprehensive Data Validation Report

Draper Aden Associates Engineering

Surveying

Environmental Services

Radford Facility Army Ammunition Plant: HWMU-13

		Validation Notes	
WINDOWS TO SERVICE STREET, SER	占	(ng/L)	
	궣	(ng/L)	
		ø	
	Result	(ng/L)	
		Ø	
	Result	(ng/L)	
		Sample ID	
		Analyte	

Analyte not detected above the detection limit. Continuing calibration %D > +/-25% Analyte not detected above the detection limit. Initial calibration RSD > 15%, Analyte not detected above the detection limit. Initial calibration RSD > 15%, Analyte not detected above the detection limit. Initial calibration RSD > 15%. Analyte not detected above the detection limit. Initial calibration RSD > 15%, Analyte not detected above the detection limit. Initial calibration RSD > 15%, Analyte not detected above the detection limit. Initial calibration RSD > 15%, Analyte not detected above the detection limit. Initial calibration RSD > 15%, Analyte not detected above the detection limit. Initial calibration RSD > 15%, Analyte not detected above the detection limit. Initial calibration RSD > 15%. Analyte not detected above the detection limit. Initial calibration RSD > 15%, Analyte not detected above the detection limit. Initial calibration RSD > 15%, Analyte not detected above the detection limit. Initial calibration RSD > 15%, Analyte not detected above the detection limit. Initial calibration RSD > 15%, Analyte not detected above the detection limit. Initial calibration RSD > 15%. Analyte not detected above the detection limit. Initial calibration RSD > 15%. Analyte not detected above the detection limit. Initial calibration RSD > 15%, Initial calibration RSD > 15%. Initial calibration RSD > 15%. Analyte not detected above the detection limit. Initial calibration RSD > 15% Analyte not detected above the detection limit. Initial calibration RSD > 15% Analyte not detected above the detection limit. Initial calibration RSD > 15% Analyte not detected above the detection limit. Initial calibration RSD > 15% Analyte not detected above the detection limit. Initial calibration RSD > 15% Analyte not detected above the detection limit. Initial calibration RSD > 15% Analyte not detected above the detection limit. Imitial calibration RSD > 15% Analyte not detected above the detection limit. Initial calibration RSD > 15% Analyte not detected above the detection limit. Imitial calibration RSD > 15% Analyte not detected above the detection limit. Initial calibration RSD > 15% Analyte not detected above the detection limit. Initial calibration RSD > 15% Analyte not detected above the detection limit. Initial calibration RSD > 15% Analyte not detected above the detection limit. Initial calibration RSD > 15% Analyte not detected above the detection limit. Initial calibration RSD > 15% Analyte not detected above the detection limit. Analyte not detected above the detection limit. Laboratory: CompuChem, a Division of Liberty Analytical, Cary, NC 13MWDUP I3MWDUP I3MWDUP 13MWDUP 13MWDUP 13MW1 13MW6 13MW7 13MW6 13MW7 13MW4 13MW5 13MW6 13MW4 13MW3 13MW5 13MW7 13MW2 13MW3 13MW5 13MW4 13MW5 13MW3 13MW4 13MW5 13MW6 13MW7 13MW3 3MW4 13MW3 3MW6 13MW7 bis(2-Chloroethyl) ether Method: 8270C Benzo | k | fluoranthene Acenaphthylene Chlorobenzilate p-Chloroaniline Acenaphthene

		Result		Result		d d	DL	
Analyte	Sample ID	(ng/L)	ø	(ng/L)	ص ع	(ng/L)	(ng/L)	Validation Notes
Method: 8270C								
Laboratory: CompuCl	CompuChem, a Division of Liberty Analytical, (n of Libe	rty Anal	vtical, C	Cary, NC	· .		
Chlorobenzilate	13MW4	5.3 U		. U		5	1.1	Analyte not detected above the detection limit. Continuing calibration $\%D > +/-25\%$.
	13MW5	s U		U J		5	1	Analyte not detected above the detection limit. Continuing calibration $\%D > +/-25\%$.
	13MW6	5.1 U		U J		5		Analyte not detected above the detection limit. Continuing calibration $\%D > +/-25\%$.
	13MW7	s U		U J		2		Analyte not detected above the detection limit. Continuing calibration $\%D > +/-25\%$.
	13MWDUP	5.1 U		U J		2		Analyte not detected above the detection limit. Continuing calibration $\%D > +/-25\%$.
2-Chloronaphthalene	13MW3	5 U		U J		5	grand.	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW4	5.3 U		U J		5	1.1	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW5	s U		U J		ν.		Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW6	5.1 U		U J		8		Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW7	s U		U J		5		Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MWDUP	5.1 U		U J		5		Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
4-Chlorophenyl phenyl ether	13MW3	5 U		U J		٧٠	-	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW4	5.3 U		l U		5	forms and	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW5	5 U		C D		'		Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW6	5.1 U		U J		10	54	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW7	s U		r D		S	hund	Analyte not detected above the detection limit. Initial calibration ${\rm RSD} > 15\%$.
	13MWDUP	5.1 U		U J		2	-	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
Chrysene	13MW3	s U		U J		5	1.3	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW4	5.3 U		U J		5	1.4	Analyte not detected above the detection limit. Initial calibration $\mathrm{RSD} > 15\%$.
	13MW5	s U		U J		5	1.3	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW6	5.1 U		U J		2	1.3	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW7	s U		U J		2	1.3	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MWDUP	5.1 U		U J		5	1.3	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
p-Phenylenediamine	13MW3	50 U		ı U		50	50	Analyte not detected above the detection limit. Initial calibration RSD $> 15\%$. Continuing calibration $\%D > +/-25\%$.
	13MW4	53 U		l U		90	53	Analyte not detected above the detection limit. Initial calibration RSD $> 15\%$. Continuing calibration %D $> +/-25\%$.
	13MW5	50 U		l U		50	50	Analyte not detected above the detection limit. Initial calibration RSD $> 15\%$. Continuing calibration $\%D > +/-25\%$.
	13MW6	51 U		U J		50	51	Analyte not detected above the detection limit. Initial calibration RSD $> 15\%$. Continuing calibration $\%D > +/-25\%$.
	13MW7	50 U		U J		50	50	Analyte not detected above the detection limit. Initial calibration RSD $> 15\%$. Continuing calibration %D $> +/-25\%$.
	13MWDUP	51 U		U J		50	51	Analyte not detected above the detection limit. Initial calibration RSD $> 15\%$. Continuing calibration $\%D > +/-25\%$.
Diallate	13MW3	s U		l U		5		Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW4	5.3 U		U J		5	1.1	Analyte not detected above the detection limit. Initial calibration $\mathrm{RSD} > 15\%$.
	13MW5	s U		U J		2		Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW6	5.1 U		U J		١٥.	-	Analyte not detected above the detection limit. Initial calibration RSD $> 15\%$.

		Result	Result	g	DL	
Analyte	Sample ID (ug/L	(ug/L) Q	/L) Q (ug/L) Q (ug/L) (ug/L)	(ng/L)	(ng/L)	Validation Notes
Method: 8270C	Z0Z					
Laboratory: C	CompuChem, a Division of L	ın of Liberty An	Liberty Analytical, Cary, NC	ry, NC		

Analyte	Sample ID	(ng/L)	o G	(ng/L) Q	(ng/L)	(ng/L)	Validation Notes
Method: 8270C							
Laboratory: CompuC	CompuChem, a Division of Liberty Analytical, C	n of Li	berty Ana		ary, NC		
Diallate	13MW7	2		. D	5	_	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MWDUP	5.1	Ω	U J	5		Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
Dibenzofuran	13MW1	S	n	U J	5		Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW2	5	n	U J	5	_	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW3	2	D	U J	5	_	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW4	5.3	D	l U	5	1.1	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW5	5	n	U J	5	1	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW6	5.1	n	U J	5	1	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW7	S	n	U J	5	1	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MWDUP	5.1	n	U J	5	1	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
Dimethoate	13MW3	2	Ω	U J	5	_	Analyte not detected above the detection limit. Initial calibration RSD > 15%.
	13MW4	5.3	Ω	l U	5	1.1	Analyte not detected above the detection limit. Initial calibration RSD > 15%.
	13MW5	S	Ω	U J	Ŝ	_	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW6	5.1	n	U J	5	_	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW7	5	n	U J	5	_	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MWDUP	5.1	n	U J	5	_	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
3,3'-Dimethylbenzidine	13MW1	S	n	U J	5	4	Analyte not detected above the detection limit. Continuing calibration $\%D > +/-25\%$.
	13MW2	5	n	U J	5	4	Analyte not detected above the detection limit. Continuing calibration %D $> +1.25\%$.
	13MW3	5	n	U J	S	4	Analyte not detected above the detection limit. Continuing calibration %D $> +1.25\%$.
	13MW4	5.3	D	U J	5	4.2	Analyte not detected above the detection limit. Continuing calibration $\%D > +/-25\%$.
	13MW5	2	D	U J	5	4	Analyte not detected above the detection limit. Continuing calibration $\%D > +/-25\%$.
	13MW6	5.1	n	U J	5	4.1	Analyte not detected above the detection limit. Continuing calibration %D $> +/-25\%$.
	13MW7	S	n	U J	5	4	Analyte not detected above the detection limit. Continuing calibration %D $> +/-25\%$.
	13MWDUP	5.1	n	U J	5	4.1	Analyte not detected above the detection limit. Continuing calibration %D $> +/-25\%$.
4,6-Dinitro-o-cresol	13MW3	10	U	U J	10	_	Analyte not detected above the detection limit. Initial calibration RSD > 15%. Continuing calibration %D > +/-25%.
	13MW4	10	D	ı u	10	1.1	Analyte not detected above the detection limit. Initial calibration RSD > 15%. Continuing calibration %D > +/-25%.
	13MW5	10	U	u J	10	_	Analyte not detected above the detection limit. Initial calibration RSD > 15%. Continuing calibration %D > +/-25%.
	13MW6	10	n	U J	10	_	Analyte not detected above the detection limit. Initial calibration RSD > 15%. Continuing calibration %D > +/-25%.
	13MW7	10	n	U J	10	_	Analyte not detected above the detection limit. Initial calibration RSD $> 15\%$. Continuing calibration %D $> +/-25\%$.
	13MWDUP	10	U	U J	10	_	Analyte not detected above the detection limit. Initial calibration RSD > 15%. Continuing calibration %D > +/-25%.
2,4-Dinitrophenol	13MW3	10	U	U J	10	1.1	Analyte not detected above the detection limit. Initial calibration RSD > 15%. Continuing calibration %D > +/-25%.
	13MW4	10	Ω	U J	10	1.1	Analyte not detected above the detection limit. Initial calibration RSD > 15%. Continuing calibration %D > +/-25%.
	13MW5	10	n	U J	10	1.1	Analyte not detected above the detection limit. Initial calibration RSD $> 15\%$. Continuing calibration %D $> +/-25\%$.

		Result	Result	QL	DL	
Analyte	Sample ID	(ng/L) Q	(ug/L) Q	(ng/L)	(ng/L)	Validation Notes
Method: 8270C						
Laboratory: CompuC	CompuChem, a Division of Liberty Analytical,	n of Liberty	_	Cary, NC		
2,4-Dinitrophenol	13MW6	10 U	U J	10	1.1	Analyte not detected above the detection limit. Initial calibration RSD > 15%. Continuing calibration %D > +/-25%.
	13MW7	10 U	0 0	10	1.1	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$. Continuing calibration $\%D > +/-25\%$.
	13MWDUP	10 U	U J	10	1.1	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$. Continuing calibration $\%D > +/-25\%$.
Famphur	13MW3	5 U	r D	5	5	Analyte not detected above the detection limit. MS recovered low.
	13MW4	5.3 U	l U	S	5.3	Analyte not detected above the detection limit. MS recovered low.
	13MW5	s U	r n	S	5	Analyte not detected above the detection limit. MS recovered low.
	13MW6	5.1 U	l U	S	5.1	Analyte not detected above the detection limit. MS recovered low.
	13MW7	s U	U J	5	5	Analyte not detected above the detection limit. MS recovered low.
	13MWDUP	5.1 U	c J	5	5.1	Analyte not detected above the detection limit. MS recovered low.
Fluorene	13MW3	5 U	r D	S		Analyte not detected above the detection limit. Initial calibration RSD $> 15\%$.
	13MW4	5.3 U	U J	5	-	Analyte not detected above the detection limit. Initial calibration RSD $> 15\%$.
	13MW5	s U	u J	S	pond	Analyte not detected above the detection limit. Initial calibration RSD $> 15\%$.
	13MW6	5.1 U	כ	\$		Analyte not detected above the detection limit. Initial calibration RSD $> 15\%$.
	13MW7	5 U	ר ס	S		Analyte not detected above the detection limit. Initial calibration RSD $> 15\%$.
	13MWDUP	5.1 U	C J	5	-	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
Hexachlorophene	13MW3	200 U	C J	200	141	Target analyte not detected by TIC.
	13MW4	200 U	נ	200	141	Target analyte not detected by TIC.
	13MW5	200 U	c o	200	141	Target analyte not detected by TIC.
	13MW6	> 009	U J	200	141	Target analyte not detected by TIC.
	13MW7	200 U	U J	200	141	Target analyte not detected by TIC.
	13MWDUP	200 U	C J	200	141	Target analyte not detected by TIC.
Hexachloropropene	13MW3	s U	U J	5	_	Analyte not detected above the detection limit. LCS recovered low.
	13MW4	5.3 U	l U	S	1.1	Analyte not detected above the detection limit. LCS recovered low.
	13MW5	s U	ı u	S		Analyte not detected above the detection limit. LCS recovered low.
	13MW6	5.1 U	r n	5	_	Analyte not detected above the detection limit. LCS recovered low.
	13MW7	5 U	ı u	S	-	Analyte not detected above the detection limit. LCS recovered low.
	13MWDUP	5.1 U	u J	5	-	Analyte not detected above the detection limit. LCS recovered low.
Kepone	13MW3	5 U	l U	\$	5	Analyte not detected above the detection limit. MS recovered low.
	13MW4	5.3 U	l U	S	5.3	Analyte not detected above the detection limit. MS recovered low.
	13MW5	s U	l U	Ś	5	Analyte not detected above the detection limit. MS recovered low.
	13MW6	5.1 U	l U	S	5.1	Analyte not detected above the detection limit. MS recovered low.
	13MW7	s u	l U	S	5	Analyte not detected above the detection limit. MS recovered low.
	13MWDUP	5.1 U	C D	5	5.1	Analyte not detected above the detection limit. MS recovered low.

		Result	Re	Result	Q.	Ы	
Analyte	Sample ID	(ng/L)	ت ص	(ng/L) Q	(ng/L)	(ng/L)	Validation Notes
Method: 8270C							
Laboratory: CompuC	CompuChem, a Division of Liberty Analytical, C	n of Liber	ty Analyti	ical, Cary,	ary, NC		
Methapyrilene	13MW3	s U	ר	U J	S	S	Analyte not detected above the detection limit. Continuing calibration $\%D > +/-25\%$.
	13MW4	5.3 U	ן	u J	Š	5.3	Analyte not detected above the detection limit. Continuing calibration $\%D > +/-25\%$.
	13MW5	s U	נ	U J	5	5	Analyte not detected above the detection limit. Continuing calibration $\%D > +/-25\%$.
	13MW6	5.1 U	_	U J	5	5.1	Analyte not detected above the detection limit. Continuing calibration $\%D>+/-25\%$.
	13MW7	5 U	J	U J	S	5	Analyte not detected above the detection limit. Continuing calibration $\%D > +/-25\%$.
	13MWDUP	5.1 U	D	J J	5	5.1	Analyte not detected above the detection limit. Continuing calibration $\%D > +/-25\%$.
Methyl parathion	13MW3	5 U	נ	u J	5		Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW4	5.3 U	ן	J J	5	Ξ	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW5	s U	1	J J	5		Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW6	5.1 U	,	J J	5		Analyte not detected above the detection limit. Initial calibration RSD > 15%.
	13MW7	s U		U J	5	1	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MWDUP	5.1 U	Ω	J J	5	-	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
2-Naphthylamine	13MW3	5 U	1	U J	5	_	Analyte not detected above the detection limit. Initial calibration RSD > 15%. Continuing calibration %D > +/-25%.
	13MW4	5.3 U	Ω	J J	5	1.1	Analyte not detected above the detection limit. Initial calibration RSD > 15%. Continuing calibration %D > +/-25%.
	13MW5	5 U	1	l U	S	-	Analyte not detected above the detection limit. Initial calibration RSD > 15%. Continuing calibration %D > +/-25%.
	13MW6	5.1 U	_	J J	S	-	Analyte not detected above the detection limit. Initial calibration RSD > 15%. Continuing calibration %D > +/-25%.
	13MW7	5 U	7	J J	5	-	Analyte not detected above the detection limit. Initial calibration RSD > 15%. Continuing calibration %D > +/-25%.
	13MWDUP	5.1 U	2	J J	\$	_	Analyte not detected above the detection limit. Initial calibration RSD > 15%. Continuing calibration %D > +/-25%.
4-Nitroquinoline-1-oxide	13MW3	s U	,	J J	5	_	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW4	5.3 U	,	U J	5	1.1	Analyte not detected above the detection limit. Initial calibration RSD > 15%.
	13MW5	5 U	7	U J	5	_	Analyte not detected above the detection limit. Initial calibration RSD > 15%.
	13MW6	5.1 U	ר	U J	2	_	Analyte not detected above the detection limit. Initial calibration RSD > 15%.
	13MW7	5 U	ר	U J	5	_	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MWDUP	5.1 U	7	U J	5	_	Analyte not detected above the detection limit. Initial calibration RSD $> 15\%$.
N-Nitrosomorpholine	13MW3	5 U	ר	U J	5	_	Analyte not detected above the detection limit. Initial calibration RSD > 15%.
	13MW4	5.3 U	ר	U J	5	1.1	Analyte not detected above the detection limit. Initial calibration RSD > 15%.
	13MW5	5 U	ן	U J	5	_	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW6	5.1 U	ר	U J	5	_	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW7	5 U	ב	U J	2	-	Analyte not detected above the detection limit. Initial calibration RSD > 15%.
	13MWDUP	5.1 U	ר	U J	5	_	Analyte not detected above the detection limit. Initial calibration RSD > 15%.
N-Nitrosopyrrolidine	13MW3	5 U	٦	u J	S	1	Analyte not detected above the detection limit. Initial calibration RSD > 15%.
	13MW4	5.3 U	ט	U J	5	1.1	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW5	5 U	Ω	l l	5	-	Analyte not detected above the detection limit. Initial calibration RSD > 15%.

Monitoring Event: Second Quarter 2009 Comprehensive Data Validation Report

Draper Aden Associates

Radford Facility Army Ammunition Plant: HWMU-13

		Result		Result	Q G	Ы	
Analyte	Sample ID	(ug/L) Q	ø	(ug/L) Q	(ng/L)	(ng/L)	(ug/L) Q (ug/L) (ug/L) Validation Notes
Method: 8270C	D 0						
Laboratory:	Laboratory: CompuChem, a Division of Liberty Analytical, Cary, NC	n of Liber	ty Ana	lytical, Cary	, NC		

N-Nitrosopyrrolidine	13MW6	5.1	n	n	J	5	-	Analyte not detected above the detection limit. Initial calibration RSD > 15%.
	13MW7	5	Ω	Ω	ŗ	5	-	Analyte not detected above the detection limit. Initial calibration RSD > 15%.
	13MWDUP	5.1	Ω	n	Ţ	S	_	Analyte not detected above the detection limit. Initial calibration RSD > 15%.
Pentachlorobenzene	13MW3	S	n	D	ſ	5	_	Analyte not detected above the detection limit. Initial calibration RSD > 15%.
	13MW4	5.3	U	D	ſ	5	1.1	Analyte not detected above the detection limit. Initial calibration RSD > 15%.
	13MW5	5	Ω	Ω	ſ	5	_	Analyte not detected above the detection limit. Initial calibration RSD > 15%,
	13MW6	5.1	Ω	D	_	5	_	Analyte not detected above the detection limit. Initial calibration RSD > 15%,
	13MW7	5	Ω	D	ſ	5	_	Analyte not detected above the detection limit. Initial calibration RSD > 15%.
	13MWDUP	5.1	Ω	Þ	ſ	5	_	Analyte not detected above the detection limit. Initial calibration RSD > 15%.
Pyrene	13MW1	5	Ω	D	ſ	5	1.4	Analyte not detected above the detection limit. Initial calibration RSD > 15%.
	13MW2	5	Ω	D	ſ	5	1.4	Analyte not detected above the detection limit. Initial calibration RSD > 15%.
	13MW3	5	U	Ω	ſ	5	1.4	Analyte not detected above the detection limit. Initial calibration RSD > 15%.
	13MW4	5.3	Ω	D	ſ	5	1.5	Analyte not detected above the detection limit. Initial calibration RSD > 15%.
	13MW5	5	U	D	ſ	5	1.4	Analyte not detected above the detection limit. Initial calibration RSD > 15%.
	13MW6	5.1	Ŋ	D	ſ	5	1.5	Analyte not detected above the detection limit. Initial calibration RSD > 15%.
	13MW7	5	Ω	D	Г	5	1.4	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MWDUP	5.1	U	n	7	S	1.5	Analyte not detected above the detection limit. Initial calibration RSD > 15%.
o-Toluidine	13MW3	2	Ω	D	г.	5	-	Analyte not detected above the detection limit. Initial calibration RSD > 15%.
	13MW4	5.3	Ŋ	D	ſ	'n	1.1	Analyte not detected above the detection limit. Initial calibration $RSD > 15\%$.
	13MW5	2	n	D	_	ς.	-	Analyte not detected above the detection limit. Initial calibration RSD > 15%.
	13MW6	5.1	D	D	Г	5	-	Analyte not detected above the detection limit. Initial calibration RSD > 15%.
	13MW7	2	Ω	D	n	2	-	Analyte not detected above the detection limit. Initial calibration RSD > 15%.
	13MWDUP	5.1	Ω	ם	-	'n		Analyte not detected above the detection limit. Initial calibration RSD > 15%.

sus a Division of Liberty Analytical, Cary, NC	127.3 4 0.887 No action taken. Field duplicate result was 123.6 μ ug/1 (RPD = 2.9).	1.33 J 4 0.887 Result < QL.	123.6 4 0.887 No action taken. Field duplicate for 13MW4.
aboratory: CompuChem, a Division of Liberty Analytical, Cary, NC	127.3	1.334 J 1.33 J	123.6 123.6
ory: CompuChem, a Divisio	13MW4	13MW6	13MWDUP
Laboratory:	Perchlorate		

Method: E314.0

Monitoring Event: Second Quarter 2009 Comprehensive Data Validation Report

Draper Aden Associates
Egirenig • Surveying • Environmall Services

Validation Notes (ng/L) 占 (ng/L) Ø (ng/L) Result Ø (ng/L) Result Sample ID Analyte

UA Denotes analyte not detected at or above adjusted sample QL. J Denotes analyte reported at or above QL and associated result is estimated due to quality control reasons. When used with a "U" (i.e., "UJ"), denotes analyte not detected at or above QL and QL is estimated due to quality control reasons. When used with "UA" (i.e., "UAJ"), Definitions: QL Denotes quantitation limit. DL Denotes detection limit. Q Denotes data qualifier. U Denotes analyte not detected at or above QL

B or J denotes result between detection limit and QL. Estimated result. B and J are laboratory result data qualifiers.

denotes analyte not detected at or above adjusted QL and adjusted QL is estimated due to quality control reasons. R Denotes result rejected.

Appendix IX Monitoring Events:

For Appendix IX Monitoring Events, results are reported to the detection limit.

Appendix IX Monitoring Events: First Quarter 2006 (First Appendix IX Monitoring Event for unit). Second Quarter 2007. Second Quarter 2008. Second Quarter 2009.

Data Validation Summary
Fourth Quarter 2009 Semiannual Groundwater Monitoring Event

Open Burning Ground (OBG) - HWMU 13 Radford Facility Army Ammunition Plant, Radford, Virginia EPA ID# VA1210020730

Draper Aden Associates performed data validation of the analytical results for the Fourth Quarter 2009 semiannual groundwater monitoring event at the Open Burning Ground (OBG) located at the Radford Facility Army Ammunition Plant (RFAAP) in Radford, Virginia. The following information and attached table summarize the data validation results.

Sample Collection/Analytical Services

Draper Aden Associates of Blacksburg, Virginia collected the groundwater samples during October 19-20, 2009.

Samples were submitted for laboratory analysis via courier to CompuChem, a Division of Liberty Analytical, of Cary, North Carolina and Lancaster Laboratories, Lancaster, Pennsylvania.

The chain of custody and permit required target analytes submitted to each laboratory is provided as an attachment.

Receipt of Monitoring Event Data

On behalf of Alliant Techsystems Inc., each laboratory submitted results to Draper Aden Associates in a final certificate of analysis which included analytical results as well as relevant documentation to verify and validate the results. The final certificate of analysis for the event was received on December 31, 2009.

Verification Events

No verification sampling was required.

Data Presentation

Sample results provided by the laboratory were reported and presented on the attached data validation summary table to at or above the method detection limit (MDL). Validated sample results are reported to at or above the quantitation limit (QL).

A reported value for a target analyte detected between the MDL and the QL should be considered an estimated concentration. Target analytes reported by the laboratory as detected less than the corresponding QLs are validated and qualified as "U" to note the analyte was analyzed for, but not detected above the QL.

No results were rejected based on the data validation criteria.

A summary of the data validation is provided below.

Data Validation Summary

The samples were analyzed by SW-846 Method requirements (Test Methods for Evaluating Solid Wastes - Physical and Chemical Methods, USEPA SW-846, 3rd edition - Final Update 1, II/IIA and III) and USEPA Methods for the "Determination of Organic and Inorganic Compounds in Drinking Water, Volume 1, EPA 815-R-00-014. All data, except where noted below, were evaluated in general accordance with:

- USEPA Region III Modifications to the Laboratory Data Validation Functional Guidelines for Evaluating Inorganic Analyses, April 1993.
- USEPA Region III Modifications to National Functional Guidelines for Organic Data Review, September 1994.
- USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, June 2008.
- USEPA Region III Innovative Approaches for Validation of Organic and Inorganic Data Standard Operating Procedures M-1, June 1995, modified, and the analytical method.

The evaluation of the data was based on the following:

- Data package completeness
- Chain of custody
- Holding time/preservation
- Initial and continuing calibrations
- Blanks
- Interference check sample (inorganics)
- Surrogates
- Matrix spike/matrix spike duplicate (MS/MSD) samples
- Laboratory control samples (LCS)
- Internal standards
- Field duplicate
- Serial dilution (inorganics)
- Target analyte identification and quantitation
- Other criteria as noted below

Data validation results are summarized on the attached reports and table. A summary of the required methods of analysis and the laboratory that performed the analysis is provided below.

Summary of Required Analytical Methods and Laboratory

	Laboratory/				Monitori	ing Well			
Analytical Method	SDG	13MW1	13MW2	13MW3	13MW4	13MWDUP (13MW4)	13MW5	13MW6	13MW7
8260B Volatiles	Lancaster Laboratories, Inc./ RAD23	Х	X	X	Х	Х	X	X	Х
8270C Semivolatiles	CompuChem/ 0910165	X	X	X	X	X	Х	Х	Х
6020 Inorganics (*)	CompuChem/ 0910165	Χ	X	X	Х	Х	Х	Х	Х
7470A Mercury	CompuChem/ 0910165	Х	Х	Х	Х	Χ	Х	Х	Χ
8330A Explosives	CompuChem/ 0910165	Χ	Х	Χ	Χ	X	Х	Х	Х
8332 Nitroglycerin	CompuChem/ 0910165	Χ	Х	Χ	Х	Х	Χ	Х	X
314.0 Perchlorate	CompuChem/ 0910165	Х	Х	Х	Х	X	Х	Х	Х

Note: 13MW1 and 13MW2 background monitoring wells. Remaining monitoring locations are compliance wells. (*) For 4Q2009, the laboratory analyzed inorganics by 6020 ICP-MS, instead of 6010B-ICP.

Each final certificate of analysis was complete in its presentation and the data were of acceptable quality.

The chain of custody documentation was complete. The chain of custody was appropriately signed and dated by field and laboratory personnel.

Each laboratory received the samples on ice and in good condition, with custody seals intact. Applicable holding time and preservation criteria were met for all samples and methods, except where noted below. The data set demonstrated the laboratory's ability to achieve the reported permit QL, except where discussed below.

SW-846 Method 8260B/5030B-25 ml purge volume Volatile Organic Analytes

The instrument performance check, instrument calibration, blank, surrogate, MS/MSD, LCS, internal standards, sample/field sample duplicate results, and target analyte identification and quantitation were met, except where noted below. The laboratory analyzed a passing method detection limit check sample. Although not required, the laboratory also analyzed a passing initial calibration verification standard. The MS/MSD analysis was performed on project sample 13MW5. MS/MSD criteria were met except where noted below. A trip blank was analyzed for each day of sample collection. Sample 13MW4 was selected as the blind field duplicate (13MWDUP). Trichloroethene was detected at 1.4 µg/l in 13MW4 and in 13MWDUP. Sample/Field Sample Duplicate RPD criteria were met. Sample results were reviewed for transcription errors from the instrument data to the laboratory report and no errors were noted.

Deviations from specific QA/QC criteria that were identified during the data review process are summarized below.

- Toluene was reported in the trip blanks and influenced final sample results. For toluene, detected results were attributed to blank contamination and qualified as "U" to reflect the analyte was analyzed for, but not detected above the QL.
- MS/MSD recovered within laboratory control limits, with the exception of MS which
 recovered outside the project specified control limits for carbon tetrachloride. The MS for
 carbon tetrachloride recovered slightly high and detected results above the QL for carbon
 tetrachloride were qualified as "J" to note the result is estimated. This applied to 13MW3
 only.
- The laboratory provided the analyst initial demonstration of capability data for analyst A. Sneeringer.
- Hexachloroethane was reported by Method 8260B and 8270C.
- The laboratory revised the Method 8260B certificate of analysis to include hexachloroethane.
- Performance evaluation samples were not evaluated with the sampling event.

SW-846 Method 8270C/3510C - Semivolatile Organic Analytes

The instrument performance check, instrument calibration, blank, surrogate, MS/MSD, LCS, internal standards, sample/field sample duplicate results, and target analyte identification and quantitation were met, except where noted below. The MS/MSD analysis was performed on project sample 13MW5. Associated blanks were interference free, except where noted below. Sample 13MW4 was selected as the blind field duplicate (13MWDUP). No other target analytes were detected in the 13MW4 or the field duplicate. Sample results were reviewed for transcription errors from the instrument data to the laboratory report and no errors were noted, except noted below.

Deviations from specific QA/QC criteria that were identified during the data review process are summarized below.

- The laboratory revised the certificate of analysis to include the initial demonstration of capability data for analyst 2650, the method detection limit study data and passing performance evaluation sample data.
- Hexachloroethane was reported by Method 8260B and 8270C.
- Bis(2-ethylhexyl)phthalate was reported below the QL in the blind field duplicate. Bis(2-ethylhexyl)phthalate was not detected in any project sample and no data qualification was required.
- Although listed on the certificate of analysis separately, 3-methylphenol and 4-methylphenol cannot be analyzed separately due to analytical limitations.
 Methylphenol and 4-methylphenol cannot be resolved under the chromatographic conditions used for sample analysis. The result reported for 4-methylphenol represents the combined total for both compounds.

N-nitrosodiphenylamine converts to diphenylamine during analysis and cannot be
resolved under the chromatographic conditions used for sample analysis. The result
reported as n-nitrosodiphenylamine represents the combined total for both nnitrosodiphenylamine and diphenylamine.

SW-846 Method 6020/3005 - Inorganics-total

Instrument tune, calibration, QL check standard, blank, interference check sample, MS/MSD, LCS, internal standards, serial dilution, sample/field sample duplicate results were met, except where noted below. The MS/MSD samples were analyzed on project sample 13MW5 as noted on the chain of custody. Sample 13MW4 was selected as the blind field duplicate (13MWDUP). Barium was detected at 55.3 µg/l in 13MW4 and 56.1 µg/l in 13MWDUP. Sample/Field Sample Duplicate RPD criteria were met. Chromium was detected above the QL in 13MW4 and below the QL in the field duplicate.

Sample results were reviewed for transcription errors from the instrument data to the laboratory report and no errors were noted.

Deviations from specific QA/QC criteria that were identified during the data review process are summarized below.

- The internal standard relative intensity for Bi209 recovered low (68%R) in sample 13MW6. The result associated with the Bi209 internal standard (lead) was lead. Lead was not detected at or above the detection limit or QL and the QL was qualified as estimated "J" due to the observed QC deviation. Bi209 also recovered low in the ICSA and ICSAB.
- The laboratory reported the inorganic results by Method 6020, instead of Method 6010B as allowed by VDEQ. Target analyte QL were similar and reported concentrations were consistent with historical data. The laboratory was requested to analyze future project samples as noted on the chain of custody.
- The laboratory provided as a revision, the method detection limit study (MDL) and analyst initial demonstration of capability data.

SW-846 Method 7470A - Mercury-total

QL standard, Calibration, blank, MS/MSD, LCS, and sample/field sample duplicate results were met, except where noted below. The MS/MSD was analyzed on project sample 13MW5, as noted on the chain of custody. Mercury was not detected in the sample/field duplicate sample (13MW4/13MWDUP). Sample results were reviewed for transcription errors from the instrument data to the laboratory report and no errors were noted.

No deviations from specific QA/QC criteria were identified during the data review process.

• The laboratory provided as a revision, the method detection limit study (MDL) and analyst initial demonstration of capability data for analyst N. Bolton.

Performance evaluation samples were not evaluated with the sampling event.

SW-846 Methods 8330B/8332 - Explosives/Nitroglycerin

The instrument performance check, instrument calibration, blank, surrogate, MS/MSD, LCS, internal standards, sample/field sample duplicate results, and target analyte identification and quantitation were met, except where noted below. The MS/MSD analysis was performed on project sample 13MW5. Sample 13MW4 was selected as the blind field duplicate (13MWDUP). No target analytes were detected in the sample/field duplicate sample (13MW4/13MWDUP). Sample results were reviewed for transcription errors from the instrument data to the laboratory report and no errors were noted.

Deviations from specific QA/QC criteria that were identified during the data review process are summarized below.

- Low surrogate recovery was observed in sample MW-2 for Methods 8330B/8332. MW-2 was re-extracted within the holding time criteria for Method 8330B (explosives) with acceptable surrogate recoveries. MW-2 was re-extracted outside the holding time criteria for Method 8332 (nitroglycerin) with acceptable recoveries. Nitroglycerin was not detected at or above the detection limit or QL in MW-2 and the nitroglycerin result was qualified as "UJ" to note that the QL is estimated due to the 7-day holding time exceedance.
- The laboratory provided as a revision the analyst initial demonstration of capability data and MDL study data.
- As per the laboratory's narrative from Second Quarter 2009, the data meets the requirements outline in SW-846 8330B. The laboratory will reference 8330B for future events.
- Performance evaluation samples were not evaluated with the sampling event.

US EPA Method 314.0 - Perchlorate

The instrument performance check, instrument calibration, blank, surrogate, MS/MSD, LCS, and sample/field sample duplicate results were met, except where noted below. The laboratory analyzed an initial calibration standard at 4 µg/l, the QL. The MS/MSD analysis was performed on project sample 13MW5. Sample 13MW4 was selected as the blind field duplicate (13MWDUP). Perchlorate was detected at 132.2 µg/l in 13MW4 and 140.8 µg/l in 13MWDUP. Sample/Field Sample Duplicate RPD criteria were met. Sample results were reviewed for transcription errors from the instrument data to the laboratory report and no errors were noted.

No deviations from specific QA/QC criteria were identified during the data review process.

- The laboratory provided the method detection limit study and analyst initial demonstration of capability data as a revision.
- Performance evaluation samples were not evaluated with the sampling event.

LIMITATIONS:

Draper Aden Associates prepared this document (which may include drawings, specifications, reports, studies and attachments) in accordance with the agreement between Draper Aden Associates and the client.

The standard of care for all professional engineering, environmental and surveying and related services performed or furnished by Draper Aden Associates under this Agreement are the care and skill ordinarily used by members of these professions practicing under similar circumstances at the same time and in the same locality. Draper Aden Associates makes no warranties, express or implied, under this Agreement in connection with Draper Aden Associates' services.

Conclusions presented are based upon a review of available information, the results of our field studies, and/or professional judgment. To the best of our knowledge, information provided by others is true and accurate, unless otherwise noted. Draper Aden Associates' liability, hereunder, shall be limited to amounts due Draper Aden Associates for services actually rendered, or reimbursable expenses actually incurred.

Any reuse or modification of any of the aforementioned documents (whether hard copies or electronic transmittals) prepared by Draper Aden Associates without wriften verification or adaptation by Draper Aden Associates will be at the sole risk of the individual or entity utilizing said documents and such use is without the authorization of Draper Aden Associates. Draper Aden Associates shall have no legal liability resulting from any and all claims, damages, losses, and expenses, including attorney's fees arising out of the unauthorized reuse or modification of these documents. Client shall indemnify Draper Aden Associates from any claims arising out of unauthorized use or modification of the documents whether hard copy or electronic.

Draper Aden Associates

This Report has been prepared by:

Janet C. Frazier

Senior Environmental Scientist

2206 South Main Street

Blacksburg, Virginia 24060

540-552-0444,

Hrazieria daa.com

www.daa.com

This Report has been subjected to technical and quality review by:

Śrikanth Nathella, P.E.,

Project Engineer

2206 South Main Street

Blacksburg, Virginia 24060

540-552-0444

snathella(a)daa.com

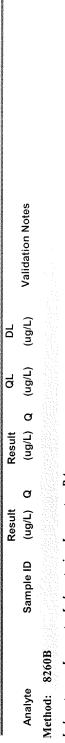
www.daa.com

7

Date:

1-29-10

Date:


Radford Facility Army Ammunition Plant: HWMU-13

		Result	Result	占	占	
Analyte	Sample ID	(ng/L) Q	(ng/L) Q	(ng/L)	(ng/L)	Validation Notes
Method: 6020						
Laboratory: CompuC	CompuChem, a Division of Liberty Analtyical,	n of Liberty A	naltyical, Cary, NC	NC		
Barium	13MW1	115	115		0.2	No action taken.
	13MW2	169	169	_	0.2	No action taken.
	13MW3	110	110	-	0.2	No action taken.
	13MW4	55.3	55.3	_	0.2	No action taken, Blind field duplicate for 13MWDUP 56.1 ug/l. RPD <10.
	13MW5	108	108	1	0.2	No action taken.
	13MW6	104	104	1	0.2	No action taken.
	13MW7	173	173	-	0.2	No action taken.
	13MWDUP	56.1	56.1	_	0.2	No action taken. Blind field duplicate for 13MW4.
Chromium	13MW1	2.1 B	n	5	=	Result < QL.
	13MW2	2.6 B	n	5	1.1	Result < QL.
	13MW3	2.9 B	ח	5	1.	Result < QL.
	13MW4	5.1	5.1	5	1.1	No action taken. Blind field duplicate for 13MWDUP 4.4 B ug/l.
	13MW5	3.9 B	U	5	1.1	Result $< QL$.
	13MW6	1.6 B	ח	ς.	1.1	Result $< QL$.
	13MW7	1.5 B	n	5	1.1	Result $< QL$.
	13MWDUP	4.4 B	٦	ν,	1.1	Blind field duplicate for 13MW4. Result $<$ QL.
Lead	13MW6	5 U	U J	5	1.5	Analyte not detected. Internal standard (Bi_209) recoverd outside control limits (68%).
Nickel	13MW1	3 B	ū	5	6.0	Result $< QL$.
	13MW2	2.4 B	ם	5	6.0	Result $< QL$.
	13MW3	1.5 B	Ω	5	6.0	Result $< QL$.
	13MW4	4.5 B	ם	5	6.0	Result $< QL$.
	13MW5	2 B	D	2	6.0	Result $<$ QL.
	13MW6	2.5 B	Ω	5	6.0	Result < QL.
	13MW7	51	51	5	6.0	No action taken.
	13MWDUP	4 B	ת	5	6.0	Blind field duplicate for 13MW4. Result $<$ QL.
Selenium	13MW1	3.9 B	ם	5	1	Result $< QL$.
	13MW5	1.6 B	ב	5	1	Result $< QL$.
	13MW6	3.1 B	Ω	S	1	Result < QL.
	13MW7	1.9 B	ב	S	1	Result $< QL$.
Zinc	13MW4	3.9 B	Ω	5	2.7	Result $<$ QL.
	13MW6	6.4	6.4	5	2.7	No action taken.
	13MW7	7.8	7.8	>	2.7	No action taken.
	13MWDUP	4.3 B	n	S	2.7	Blind field duplicate for 13MW4. Result < QL.

Monitoring Event: Fourth Quarter 2009 Comprehensive Data Validation Report

Draper Aden Associates Engineering • Surveying • Environmental Services

Laboratory: Lancaster Laboratories, Lancaster, PA

Carbon tetrachlorida	131/13/3	7. 5		5.7	_	5	10	Analyte not detected MS recovered birth (1970/)
Car bon ten aemon ne	6 11 11/61	i					1:0	יוומין כי ווכן מכוכניכים ויום וכככיכים וופון (זבי /ים).
	13MW5	0.2	ĭ	Ω	7	0.5	0.1	Result < QL. MS recovered high (127%).
Chloroform	13MW3	0.7		0.7	-	0.5	0.1	No action taken.
Tetrachloroethene	13MW7	0.2	ſ	n	_	0.5	0.1	Result $<$ QL.
Trichloroethene	13MW3	6.0		6.0	_	0.5	0.1	No action taken.
	13MW4	1.4		1.4	-	0.5	0.1	No action taken.
	13MW7	2.1		2.1	_	0.5	0.1	No action taken.
	13MWDUP	1.4		1.4	_	0.5	0.1	No action taken. Blind field duplicate for 13MW4.
Method: 8332								

Laboratory: CompuChem, a Division of Liberty Analtyical, Cary, NC

				 THE PERSON NAMED IN COLUMN										-								The second secon	
Nitroglycerin	13MW2	16	D	D	_	16	0.77	7,	unalyte n	ot detec	ted. Su	rogate 1	recovere	d low, sa	umple re	-extract	ed outsi	de holdi	ng time	criteria w	rith accep	otable	
								-	esults.												,		
Method: E314.0																							

Laboratory: CompuChem, a Division of Liberty Analtyical, Cary, NC

	= (J	and the formation of the same formation of the same of	(f)		
Perchlorate	13MW1	2.802 J	. D	4	2.632	Result < QL.
	13MW4	132.2	132.2	4	2.632	No action taken. Blind field duplicate 140.8 \lg /l. RPD < 10 .
	13MW6	5.156	5.156	4	2.632	No action taken.
	13MW7	3.805 J	Ω	4	2.632	Result < QL.
	13MWDUP	140.8	140.8	4	2.632	No action taken. Blind field duplicate for 13MW4. 132.2 ug/l. RPD < 10.

UA Denotes analyte not detected at or above adjusted sample QL. J Denotes analyte reported at or above QL and associated result is estimated due to quality control reasons. **Definitions:** QL Denotes quantitation limit. **DL** Denotes detection limit. Q Denotes data qualifier. U Denotes analyte not detected at or above QL.

When used with a "U" (i.e., "UJ"), denotes analyte not detected at or above QL and QL is estimated due to quality control reasons. When used with "UA" (i.e., "UAJ"), denotes analyte not detected at or above adjusted QL and adjusted QL is estimated due to quality control reasons. R Denotes result rejected.

B or J denotes result between detection limit and QL. Estimated result. B and J are laboratory result data qualifiers.

Appendix IX Monitoring Events:

For Appendix IX Monitoring Events, results are reported to the detection limit.

Appendix IX Monitoring Events: First Quarter 2006 (First Appendix IX Monitoring Event for unit). Second Quarter 2007. Second Quarter 2008. Second Quarter 2009.

Radford Facility Army Ammunition Plant: HWMU-13

		Result	Result		ъ Б	Ъ	
Analyte	Sample ID	(ug/L) Q	(ng/L)	Ø	(ng/L)	(ng/L)	Validation Notes
Method: 6020							1997年,他们是1997年,19
Laboratory: CompuCh	CompuChem, a Division of Liberty Analytical, Cary, NC	n of Liberty.	Analytical,	Cary, 1	ΛC		
Barium	13MW1	120	120		,	0.2	No action taken.
	13MW2	147	147		poor.	0.2	No action taken.
	13MW3	81	81	n	,	0.2	Serial dilution % Difference > 10% (33%).
	13MW4	41.5	41.5	r	_	0.2	Serial dilution % Difference > 10% (33%).
	13MW5	106	106	r	1	0.2	Serial dilution % Difference > 10% (33%).
	13MW6	75.8	75.8	ſ	_	0.2	Serial dilution % Difference > 10% (33%).
	13MW7	125	125	_	-	0.2	Serial dilution % Difference > 10% (33%).
	13MWDUP	41	41	J	_	0.2	Serial dilution % Difference > 10% (33%). Field duplicate for 13MW4.
Chromium	13MW1	4 B	4	r	5	1.1	Result $< QL$.
	13MW2	1.9 B	1.9	ſ	5	1.1	Result < QL.
	13MW3	1.6 B	1.6	ſ	5	1.1	Result $< QL$.
	13MW4	1.6 B	1.6	ъ	5	1.1	Result $< QL$.
	13MW5	3.3 B	3.3	<u>-</u>	5	1.1	Result $< QL$.
	13MW6	1.4 B	1.4	J	5	1.1	Result < QL.
	13MW7	1.4 B	1.4	J.	5	1.1	Result $< QL$.
	13MWDUP	1.5 B	1.5	r	5	1.1	Result < QL. Field duplicate for 13MW4.
Nickel	13MW1	2.4 B	2.4	T.	5	0.9	Result $< QL$.
	13MW2	2.2 B	2.2	r.	5	6.0	Result < QL.
	13MW3	2.1 B	2.1	_	5	6.0	Result $< QL$.
	13MW4	2.6 B	2.6		5	6.0	Result < QL.
	13MW5	2.9 B	2.9	J	5	6.0	Result < QL.
	13MW6	3.7 B	3.7	J	5	6.0	Result $< QL$.
	13MW7	222	222		5	6.0	No action taken.
	13MWDUP	2.6 B	2.6	J	5	6.0	Result < QL. Field duplicate for 13MW4.
Selenium	13MW1	4 B	4	1	5	_	Result < QL.
	13MW5	2.1 B	2.1	_	5		Result < QL.
	13MW6	3.2 B	3.2	,	5	-	Result < QL.
	13MW7	2.3 B	2.3	-	5	-	Result < QL.
Tin	13MW3	2.1 U	Ŋ	-	10	2.1	Target analyte not detected at or above the detection limit. MS/MSD recovered low (58%).
	13MW4	2.1 U	Þ	J	10	2.1	Target analyte not detected at or above the detection limit. MS/MSD recovered low (58%).
	13MW5	2.1 U	ח	J	10	2.1	Target analyte not detected at or above the detection limit. MS/MSD recovered low (58%).
	13MW6	2.1 U	D	r,	10	2.1	Target analyte not detected at or above the detection limit. MS/MSD recovered low (58%).
	13MW7	2.1 U	n	J.	10	2.1	Target analyte not detected at or above the detection limit. MS/MSD recovered low (58%).

APPENDIX C

CONSTITUENT BACKGROUND VALUES FOR THE COMPLIANCE GROUNDWATER MONITORING PROGRAM

RADFORD ARMY AMMUNITION PLANT – OPEN BURNING GROUND CALCULATION OF CONSTITUENT BACKGROUND VALUES FOR THE COMPLIANCE GROUNDWATER MONITORING PROGRAM CONSTITUENTS

Draper Aden Associates calculated background values for the Compliance Groundwater Monitoring Program (CGMP) constituents for the Open Burning Ground located at the Radford Army Ammunition Plant (Radford AAP) in Radford, Virginia. Background values were calculated for the additional CGMP constituents that are not on the Detection Groundwater Monitoring Program (DGMP) list.

Previously the background values for the DGMP constituents were calculated in May 2005. With the exceptions of carbon tetrachloride, chlorobenzene, hexachloroethane, methyl chloride, methlyene chloride, and perchlorate, the background values for each constituent listed in the DGMP were calculated using the analytical data for upgradient wells 13MW1 and 13MW2 from First Quarter 1996 through First Quarter 2005. Groundwater monitoring for carbon tetrachloride, chlorobenzene, hexachloroethane, methyl chloride, methlyene chloride, and perchlorate began in Fourth Quarter 2003; therefore, the background values for those six constituents were calculated using the analytical data for upgradient wells 13MW1 and 13MW2 from Fourth Quarter 2003 through First Quarter 2005. The background value calculations were based on site-wide 95% confidence, 95% coverage upper prediction intervals.

The background values for CGMP constituents not on the DGMP list were calculated using the analytical data for upgradient wells 13MW1 and 13MW2 from Fourth Quarter 2005 through Fourth Quarter 2006. The calculated background values for all target constituents are listed on **Table 1**.

Background Data and Background Value Calculations

Statistical calculations of background values were performed using the analytical data from upgradient wells 13MW1 and 13MW2 as background data. The methods of statistical analysis were dependent on the percentage of non-detects and the distribution of the background data. All CGMP constituents not on the DGMP list were 100% non-detected (<LOQ) in the background wells. The background values for these constituents were established as equal to their quantitation limits (QL). The one exception was bis(2-ethylhexyl)phthalate for which the background value was established as 6 μ g/l (USEPA Maximum Contaminant Level (MCL)) whereas its LOQ is 10 μ g/l. When GPS is less than the LOQ, constituent concentrations will be compared to the LOQ.

Backgr	ound Value =	Quantitation Lin	nit (QL)	
			QL	Background Value
Constituent	Sample Size	% Non-Detects	(µg/l)	(µg/l)
Cadmium	10	100	1	1
Nickel	10	100	5	5
Selenium	10	100	5	5
Zinc	10	100	5	5
Acetophenone	10	100	10	10
Benzyl chloride	8	100	5	5
Benzo[a]anthracene	10	100	10	10

DAA JN: B03204-101 1 December 20, 2006

Backş	ground Value =	Quantitation Lin	nit (QL)	
			QL	Background Value
Constituent	Sample Size	% Non-Detects	(µg/l)	(µg/l)
Benzo[b]fluoranthene	10	100	10	10
Benzo[k]fluoranthene	10	100	10	10
Benzo[a]pyrene	10	100	10	10
Chloromethane	10	100	5	5
Bis(2-ethylhexyl)phthalate	10	100	10	6
Butyl benzyl phthalate	10	100	10	10
Chloroform	10	100	1	1
2-Chlorophenol	10	100	10	10
Dibenz(a, h)anthracene	10	100	10	10
Dibenzofuran	10	100	10	10
1,2-Dichloroethane	10	100	1	1
1,1-Dichloroethene	10	100	1	1
2,4-Dichlorophenol	10	100	10	10
3,3'-Dimethylbenzidine	10	100	10	10
Dimethyl phthalate	10	100	10	10
m-Dinitrobenzene	10	100	2.5	2.5
2,6-Dinitrotoluene	10	100	5	5
Di-n-octyl phthalate	10	100	10	10
Fluoranthene	10	100	10	10
Indeno[1,2,3-cd]pyrene	10	100	10	10
Bromomethane	10	100	1	1
3&4-Methylphenol	10	100	20	20
Naphthalene	10	100	1	1
Nitrobenzene	10	100	10	10
p-Nitrophenol	10	100	20	20
Phenol	10	100	10	10
Pyrene	10	100	10	10
Tetrachloroethene	10	100	1	1
Toluene	10	100	5	5
Trichloroethene	10	100	1	1
sym-Trinitrobenzene	10	100	2.5	2.5
Vinyl chloride	10	100	1	1

TABLE 1

OPEN BURNING GROUND CALCULATED BACKGROUND VALUES

Constituent	Background Value
	(μg/l unless otherwise noted)
DGMP	P Parameters
Antimony	6
Arsenic	5
Barium	228
Chromium	112
Lead	14.0
Mercury	2.52
Silver	2.4
Acetone	25
Benzene	5
Carbon Tetrachloride	5
Chlorobenzene	5
Methyl chloride	5
Methylene chloride	5
Toluene	5
2,4-Dinitrotoluene	10
Di-n-butylphthalate	10
Diethyl phthalate	10
Diphenylamine	10
Hexachloroethane	10
Nitroglycerine	10 mg/l
Perchlorate	4
Total Phenols	20.0
Nitrate	1,311
Nitrite	100
Sulfate	88,000
Total Organic Carbon	10,600
Total Organic Halides	54.5
Specific Conductivity	6,870 μS/cm
pH	5.72 – 7.80 pH units
	ers not on DGMP List
Cadmium	1
Nickel	5
Selenium	5
Zinc	5
Acetophenone	10
Benzyl chloride	5
Benzo[a]anthracene	10
Benzo[b]fluoranthene	10
Benzo[k]fluoranthene	10
Benzo[a]pyrene	10
Chloromethane	5
Bis(2-ethylhexyl)phthalate	6

Constituent	Background Value
	(μg/l unless otherwise noted)
Butyl benzyl phthalate	10
Chloroform	1
2-Chlorophenol	10
Dibenz(a, h)anthracene	10
Dibenzofuran	10
1,2-Dichloroethane	1
1,1-Dichloroethene	1
2,4-Dichlorophenol	10
3,3'-Dimethylbenzidine	10
Dimethyl phthalate	10
m-Dinitrobenzene	2.5
2,6-Dinitrotoluene	5
Di-n-octyl phthalate	10
Fluoranthene	10
Indeno[1,2,3-cd]pyrene	10
Bromomethane	1
3&4-Methylphenol	20
Naphthalene	1
Nitrobenzene	10
p-Nitrophenol	20
Phenol	10
Pyrene	10
Tetrachloroethene	1
Toluene	5
Trichloroethene	1
sym-Trinitrobenzene	2.5
Vinyl chloride	1

APPENDIX A

OPEN BURNING GROUND
BACKGROUND VALUE CALCULATIONS FOR DGMP PARAMETERS

RADFORD ARMY AMMUNITION PLANT – OPEN BURNING GROUND CALCULATION OF CONSTITUENT BACKGROUND VALUES FOR THE DETECTION GROUNDWATER MONITORING PROGRAM

Draper Aden Associates calculated background values for each constituent listed in the Detection Groundwater Monitoring Program (DGMP) dated September 2003 for the Open Burning Ground located at the Radford Army Ammunition Plant (Radford AAP) in Radford, Virginia. With the exceptions of carbon tetrachloride, chlorobenzene, hexachloroethane, methyl chloride, methlyene chloride, and perchlorate, the background values for each constituent listed in the DGMP were calculated using the analytical data for upgradient wells 13MW1 and 13MW2 from First Quarter 1996 through First Quarter 2005. Groundwater monitoring for carbon tetrachloride, chlorobenzene, hexachloroethane, methyl chloride, methlyene chloride, and perchlorate began in Fourth Quarter 2003; therefore, the background values for those six constituents were calculated using the analytical data for upgradient wells 13MW1 and 13MW2 from Fourth Quarter 2003 through First Quarter 2005. The background value calculations were based on site-wide 95% confidence, 95% coverage upper prediction intervals. The calculated background values are listed in **Table 1**.

Background Data and Statistical Calculations

Statistical calculations of background values were performed using the analytical data from upgradient wells 13MW1 and 13MW2 as background data. Based on the percentage of non-detects and the distribution of the background data, methods of statistical calculations varied. Background average, standard deviation and other descriptive statistical data were computed for all constituents and are presented in **Appendix A**.

The constituents listed below were 100% non-detected (<LOQ) in the background wells. The background values for these constituents were established as equal to their quantitation limits (QL).

Ba	ckground Value =	Quantitation Lin	nit (QL)	
Parameter	Sample Size	% Non-Detects	QL (µg/l)	Background Value (μg/l)
Acetone	74	100	25	25
Benzene	74	100	5	5
Carbon tetrachloride	12	100	5	5
Chlorobenzene	12	100	5	5
Methyl chloride	12	100	5	5
Methylene chloride	12	100	5	5
Toluene	74	100	5	5
2,4-Dinitrotoluene	74	100	10	10
Di-n-butylphthalate	74	100	10	10
Diethyl phthalate	74	100	10	10
Diphenylamine	74	100	10	10
Hexachloroethane	12	100	10	10
Nitroglycerine	74	100	10 mg/l	10 mg/l
Perchlorate	12	100	4	4
Nitrite	61	100	100	100

Non-parametric prediction intervals were computed for all of the constituents for which the data from upgradient wells 13MW1 and 13MW2 satisfied one of the following two criteria, per VDEQ regulations and guidance as well as USEPA guidance:

- Percentage of non-detects was greater than or equal to 50 and less than 100; or
- Percentage of non-detects was less than 50, but data was not normally distributed in original or log-transformed mode.

The background values for these constituents were set as equal to their upper prediction limits (UPLs), with one exception. For pH, a two-sided parametric prediction interval was computed; therefore, the background value for pH consists of a range between the lower prediction limit (LPL) and the UPL. The background and relevant statistical data for these constituents are summarized below. Associated statistical computations are presented in **Appendix A**.

	d Value = UPL of N alue for pH = LPL -			
Parameter	Sample Size	% Non-Detects	QL (µg/l)	Background Value (μg/l)
Antimony	74	99	5	6
Arsenic	74	93	5	5
Chromium	74	31	5	112
Lead	74	69	5	14.0
Mercury	74	99	2	2.52
Silver	74	92	2	2.4
Total Phenols	74	97	5	20.0
Total Organic Carbon	74	73	1,000	10,600
Total Organic Halides	74	85	20	54.5
Sulfate	61	0	1,000	88,000
рĦ	62	0	0.1 pH units	5.72 – 7.80 pH units
Specific Conductivity	62	0	1 μS/cm	6,870 μS/cm

The following constituents exhibited normally or ln-normally distributed background data with less than 25% non-detects. One sided parametric prediction intervals were computed on the background data for each of these constituents. The background values for these constituents were set as equal to their UPLs. The background concentration calculations were based on a site wide 95% confidence, 95% coverage upper prediction intervals. When adjusted for multiple comparisons of the background data, the false positive rate was 5% (0.05). The background and relevant statistical data for these constituents are summarized below. The prediction interval computations for these constituents are presented in **Appendix A**.

Background `	Value = UPL o	f one-sided Predi	iction Interval	
Parameter	Sample Size	% Non-Detects	QL (µg/l)	Background Value (µg/l)
Barium	74	0	10	228
Nitrate	61	3	100	1,311

TABLE 1

OPEN BURNING GROUND CALCULATED BACKGROUND VALUES

Constituent	Background Value
	(μg/l unless otherwise noted)
Antimony	6
Arsenic	5
Barium	228
Chromium	112
Lead	14.0
Mercury	2.52
Silver	2.4
Acetone	25
Benzene	5
Carbon Tetrachloride	5
Chlorobenzene	5
Methyl chloride	5
Methylene chloride	5
Toluene	5
2,4-Dinitrotoluene	10
Di-n-butylphthalate	10
Diethyl phthalate	10
Diphenylamine	10
Hexachloroethane	10
Nitroglycerine	10 mg/l
Perchlorate	4
Total Phenols	20.0
Nitrate	1,311
Nitrite	100
Sulfate	88,000
Total Organic Carbon	10,600
Total Organic Halides	54.5
Specific Conductivity	6,870 μS/cm
рH	5.72 – 7.80 pH units

APPENDIX A

OPEN BURNING GROUND
BACKGROUND VALUE STATISTICAL CALCULATIONS

RAAP - Open Burning Ground (HWMU-13) - Statistical Analysis - Background Calculation May 10, 2005

1) Y2K Correction dates on GRITS/STAT software are as shown in the table below.

Actual Event Date	Date Used in Stat Software	Notes
1st Quarter 2000	12/10/1999	
2nd Quarter 2000	12/11/1999	
3rd Quarter 2000	12/12/1999	
4th Quarter 2000	12/13/1999	
1st Quarter 2001	12/14/1999	
2nd Quarter 2001	12/15/1999	
3rd Quarter 2001	12/16/1999	
4th Quarter 2001	12/17/1999	
1st Quarter 2002	12/18/1999	
2nd Quarter 2002	12/19/1999	
3rd Quarter 2002	12/20/1999	
4th Quarter 2002	12/21/1999	
1st Quarter 2003	12/22/1999	
2nd Quarter 2003	12/23/1999	
3rd Quarter 2003	12/24/1999	
4th Quarter 2003	12/25/1999	
1st Quarter 2004	12/26/1999	
2nd Quarter 2004	12/27/1999	
3rd Quarter 2004	12/28/1999	
4th Quarter 2004	12/29/1999	
1st Quarter 2005	12/30/1999	

- 2) No adjustments for multiple comparisons could be made for non-parametric UPLs and where UPL=QL. Any Statistically significant increase (SSI) must be confirmed by verification sampling.
- 3) No data available for pH and Specific conductivity from 2nd Qtr 1996 2nd Qtr 1997.
- 4) Background for chlorobenzene, Carbon tetrachloride, Methyl Chloride (Chloromethane), Methylene Chloride (Dichloromethane), Hexachloroethane and Perchlorate based on 4th Quarter 2003 to 1st Quarter 2005 data.
- 5) Background for all other target constituents based on 1st Quarter 1996 through 1st Quarter 2005 data.

P:\B03\200\B03204\B03204-03\WORK\[StatDate correction.xls]Statcorrection dates

Report Printed: 05-10-2005 20:01

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford

ST:VA Zip:

County:PULASKI

Contact:

Phone:() -

Permit Type: Detection

Constituent: CCl4 Carbon tetrachloride

CAS Number: 56-23-5

MCL:

5.000 ppb

ACL:

0.000 ppb

Detect Limit:

10.000 ppb

Start Date: Mar 31 1996 End Date: Dec 30 1999

Well ID:13MW1

Sample Date	Observation	Ln
Dec 25 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 26 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 27 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 28 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 29 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 30 1999	5.000 ppb	1.609 (* Nondetect *)

Well ID:13MW1 **Summary Statistics**

Observations (N):

Nondetects (%ND):100

5.000 ppb 5.000 ppb Minimum: Ln Minimum: 1.609 Maximum: Ln Maximum: 1.609 5.000 ppb 0.000 ppb Mean: 1.609 Ln Mean: Std. Dev.: Ln Std. Dev.: 0.000

5.000 ppb	1.609 (* Nondetect *)
	1.609 (* Nondetect *)
5.000 ppb	1.609 (* Nondetect *)
	5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb

Observations (N): 6 Nondetects (%ND):100

 Minimum:
 5.000 ppb
 Ln Minimum:
 1.609

 Maximum:
 5.000 ppb
 Ln Maximum:
 1.609

 Mean:
 5.000 ppb
 Ln Mean:
 1.609

 Std. Dev.:
 0.000 ppb
 Ln Std. Dev.:
 0.000

Report Printed: 05-10-2005 20:01

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:VA Zip:

County:PULASKI

Contact:

Phone:() -

Permit Type:Detection

Constituent: ChlBenz Chlorobenzene

CAS Number: 108-90-7

MCL: 100.000 ppb ACL: 0.000 ppb Detect Limit: 10.000 ppb

Start Date: Mar 31 1996 End Date: Dec 30 1999

Well ID:13MW1

Sample Date Observation Ln Dec 25 1999 5.000 ppb 1.609 (* Nondetect *) 5.000 ppb 5.000 ppb Dec 26 1999 1.609 (* Nondetect *) Dec 27 1999 1.609 (* Nondetect *) 5.000 ppb 1.609 (* Nondetect *) Dec 28 1999 5.000 ppb Dec 29 1999 1.609 (* Nondetect *) Dec 30 1999 5.000 ppb 1.609 (* Nondetect *)

Well ID:13MW1 Summary Statistics

Observations (N): 6 Nondetects (%ND):100

 Minimum:
 5.000 ppb
 Ln Minimum:
 1.609

 Maximum:
 5.000 ppb
 Ln Maximum:
 1.609

 Mean:
 5.000 ppb
 Ln Mean:
 1.609

 Std. Dev.:
 0.000 ppb
 Ln Std. Dev.:
 0.000

5.000 ppb	1.609 (* Nondetect *)
	1.609 (* Nondetect *)
5.000 ppb	1.609 (* Nondetect *)
	5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb

Observations (N): 6 Nondetects (%ND):100

 Minimum:
 5.000 ppb
 Ln Minimum:
 1.609

 Maximum:
 5.000 ppb
 Ln Maximum:
 1.609

 Mean:
 5.000 ppb
 Ln Mean:
 1.609

 Std. Dev.:
 0.000 ppb
 Ln Std. Dev.:
 0.000

Report Printed: 05-10-2005 20:01

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford

ST:VA Zip:

County: PULASKI

Contact:

Phone:() -

Permit Type:Detection

Constituent: ChlMeth Chloromethane

CAS Number:

74-87-3

MCL:

0.000 ppb

ACL: Detect Limit:

0.000 ppb 10.000 ppb

Start Date:Mar 31 1996 End Date:Dec 30 1999

Well ID:13MW1

Sample Date		Ln
Dec 25 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 26 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 27 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 28 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 29 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 30 1999	5.000 ppb	1.609 (* Nondetect *)

Well ID:13MW1 Summary Statistics

Observations (N): 6 Nondetects (%ND):100

 Minimum:
 5.000 ppb
 Ln Minimum:
 1.609

 Maximum:
 5.000 ppb
 Ln Maximum:
 1.609

 Mean:
 5.000 ppb
 Ln Mean:
 1.609

 Std. Dev.:
 0.000 ppb
 Ln Std. Dev.:
 0.000

Dec 25 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 26 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 27 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 28 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 29 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 30 1999	5.000 ppb	1.609 (* Nondetect *)

Observations (N): 6 Nondetects (%ND):100

 Minimum:
 5.000 ppb
 Ln Minimum:
 1.609

 Maximum:
 5.000 ppb
 Ln Maximum:
 1.609

 Mean:
 5.000 ppb
 Ln Mean:
 1.609

 Std. Dev.:
 0.000 ppb
 Ln Std. Dev.:
 0.000

Report Printed: 05-10-2005 20:02

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford

ST:VA Zip:

County:PULASKI

Contact:

Phone:() -

Permit Type: Detection

Constituent:DiClMe Dichloromethane

CAS Number:

75-09-2

MCL:

5.000 ppb

ACL: Detect Limit: 0.000 ppb

10.000 ppb

Start Date: Mar 31 1996 End Date: Dec 30 1999

Well ID:13MW1

Sample Date Observation Ln 5.000 ppb Dec 25 1999 1.609 (* Nondetect *) Dec 26 1999 5.000 ppb 1.609 (* Nondetect *) 5.000 ppb 1.609 (* Nondetect *) Dec 27 1999 5.000 ppb 1.609 (* Nondetect *) Dec 28 1999 5.000 ppb 1.609 (* Nondetect *) Dec 29 1999 Dec 30 1999 5.000 ppb 1.609 (* Nondetect *)

Well ID:13MW1 **Summary Statistics**

Observations (N):

Nondetects (%ND):100

Minimum: Maximum: 5.000 ppb 5.000 ppb Ln Minimum: Ln Maximum: 1.609 1.609

Mean:

5.000 ppb

Ln Mean:

1.609

Std. Dev.:

0.000 ppb

Ln Std. Dev.:

0.000

Dec 25 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 26 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 27 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 28 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 29 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 30 1999	5.000 ppb	1.609 (* Nondetect *)

Observations (N): 6 Nondetects (%ND):100

 Minimum:
 5.000 ppb
 Ln Minimum:
 1.609

 Maximum:
 5.000 ppb
 Ln Maximum:
 1.609

 Mean:
 5.000 ppb
 Ln Mean:
 1.609

 Std. Dev.:
 0.000 ppb
 Ln Std. Dev.:
 0.000

Report Printed: 05-10-2005 20:02

Facility:RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:VA Zip:

County:PULASKI

Contact:

Phone:() -

Permit Type: Detection

Constituent: HClEth Hexachloroethane

CAS Number: 67-72-1

MCL: 0.000 ppb ACL: 0.000 ppb Detect Limit: 20.000 ppb

Start Date:Mar 31 1996

End Date: Dec 30 1999

Well ID:13MW1

Sample Date Observation Ln Dec 25 1999 10.000 ppb 2.303 (* Nondetect *) 10.000 ppb 2.303 (* Nondetect *) Dec 26 1999 10.000 ppb Dec 27 1999 2.303 (* Nondetect *) 2.303 (* Nondetect *) Dec 28 1999 10.000 ppb Dec 29 1999 10.000 ppb 2.303 (* Nondetect *) Dec 30 1999 10.000 ppb 2.303 (* Nondetect *)

Well ID:13MW1 Summary Statistics

Observations (N): 6 Nondetects (%ND):100

> Minimum: 10.000 ppb Ln Minimum: 2.303 10.000 ppb Maximum: Ln Maximum: 2.303 Mean: 10.000 ppb Ln Mean: 2.303 Std. Dev.: $0.000 \, \mathrm{ppb}$ Ln Std. Dev.: 0.000

Dec 25 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 26 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 27 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 28 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 29 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 30 1999	10.000 ppb	2.303 (* Nondetect *)

Observations (N): 6 Nondetects (%ND):100

 Minimum:
 10.000 ppb
 Ln Minimum:
 2.303

 Maximum:
 10.000 ppb
 Ln Maximum:
 2.303

 Mean:
 10.000 ppb
 Ln Mean:
 2.303

 Std. Dev.:
 0.000 ppb
 Ln Std. Dev.:
 0.000

Report Printed: 05-10-2005 20:02

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:VA Zip:

County: PULASKI

Contact:

Phone:() -

Permit Type: Detection

Constituent: Perchlor Perchlorate

CAS Number:

MCL:

0.000 ug/l

ACL: Detect Limit: 0.000 ug/l

8.000 ug/1

Start Date: Mar 31 1996 End Date: Dec 30 1999

Well ID:13MW1

Sample Date Observation Ln Dec 25 1999 4.000 ug/1 1.386 (* Nondetect *) Dec 26 1999 1.386 (* Nondetect *) 4.000 ug/l 1.386 (* Nondetect *) 1.386 (* Nondetect *) Dec 27 1999 4.000 ug/l Dec 28 1999 4.000 ug/l Dec 29 1999 4.000 ug/l 1.386 (* Nondetect *) 1.386 (* Nondetect *) Dec 30 1999 4.000 ug/l

Well ID:13MW1 **Summary Statistics**

Observations (N):

Nondetects (%ND):100

Minimum: Maximum: Mean:

4.000 ug/l 4.000 ug/l Ln Minimum: Ln Maximum:

Ln Mean: 1.386

Std. Dev.:

4.000 ug/l $0.000 \, \text{ug/1}$

Ln Std. Dev.:

0.000

1.386

1.386

Well ID:13MW2

Sample Date Observation

Ln

Dec 25 1999	4.000 ug/l	1.386 (* Nondetect *)
Dec 26 1999	4.000 ug/1	1.386 (* Nondetect *)
Dec 27 1999	4.000 ug/1	1.386 (* Nondetect *)
Dec 28 1999	4.000 ug/1	1.386 (* Nondetect *)
Dec 29 1999	4.000 ug/1	1.386 (* Nondetect *)
Dec 30 1999	4.000 ug/l	1.386 (* Nondetect *)

Observations (N): 6 Nondetects (%ND):100

 Minimum:
 4.000 ug/l
 Ln Minimum:
 1.386

 Maximum:
 4.000 ug/l
 Ln Maximum:
 1.386

 Mean:
 4.000 ug/l
 Ln Mean:
 1.386

 Std. Dev.:
 0.000 ug/l
 Ln Std. Dev.:
 0.000

Report Printed: 05-10-2005 17:22

Facility:RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford County:PULASKI

ST:VA Zip:

Contact:

Phone:() -

Permit Type: Detection

Constituent:Sb

Antimony, total

CAS Number: 7440-36-0

MCL:

0.000 ppb

ACL: Detect Limit: 0.000 ppb 10.000 ppb

Start Date:Mar 31 1996 End Date: Dec 30 1999

Sample Date	Observation	Ln
Mar 31 1996	1.500 ppb	0.405 (* Nondetect *)
Jun 30 1996	1.500 ppb	0.405 (* Nondetect *)
Sep 30 1996	1.500 ppb	0.405 (* Nondetect *)
Dec 31 1996	1.500 ppb	0.405 (* Nondetect *)
Mar 31 1997	1.500 ppb	0.405 (* Nondetect *)
Jun 30 1997	1.500 ppb	0.405 (* Nondetect *)
Sep 30 1997	1.500 ppb	0.405 (* Nondetect *)
Dec 31 1997	1.500 ppb	0.405 (* Nondetect *)
Mar 09 1998	1.500 ppb	0.405 (* Nondetect *)
May 14 1998	1.500 ppb	0.405 (* Nondetect *)
Aug 14 1998	1.500 ppb	0.405 (* Nondetect *)
Nov 23 1998	1.500 ppb	0.405 (* Nondetect *)
Mar 13 1999	1.500 ppb	0.405 (* Nondetect *)
May 27 1999	1.500 ppb	0.405 (* Nondetect *)
Jul 27 1999	1.500 ppb	0.405 (* Nondetect *)
Nov 08 1999	1.500 ppb	0.405 (* Nondetect *)
Dec 10 1999	1.500 ppb	0.405 (* Nondetect *)
Dec 11 1999	1.500 ppb	0.405 (* Nondetect *)
Dec 12 1999	1.500 ppb	0.405 (* Nondetect *)
Dec 13 1999	1.500 ppb	0.405 (* Nondetect *)
Dec 14 1999	1.500 ppb	0.405 (* Nondetect *)
Dec 15 1999	1.500 ppb	0.405 (* Nondetect *)
Dec 16 1999	1.500 ppb	0.405 (* Nondetect *)
Dec 17 1999	1.500 ppb	0.405 (* Nondetect *)

Dec 18 1999 5.000 ppb Dec 19 1999 5.000 ppb Dec 20 1999 5.000 ppb Dec 21 1999 5.000 ppb Dec 22 1999 5.000 ppb Dec 23 1999 5.000 ppb Dec 24 1999 5.000 ppb Dec 25 1999 5.000 ppb Dec 26 1999 5.000 ppb Dec 27 1999 5.000 ppb Dec 28 1999 5.000 ppb Dec 29 1999 5.000 ppb Dec 30 1999 5.000 ppb	1.609 (* Nondetect *)
---	---

Observations (N): 37 Nondetects (%ND):100

 Minimum:
 1.500 ppb
 Ln Minimum:
 0.405

 Maximum:
 5.000 ppb
 Ln Maximum:
 1.609

 Mean:
 2.730 ppb
 Ln Mean:
 0.828

 Std. Dev.:
 1.694 ppb
 Ln Std. Dev.:
 0.583

Sample Date	Observation	Ln
Mar 31 1996	1.500 ppb	0.405 (* Nondetect *)
Jun 30 1996	1.500 ppb	0.405 (* Nondetect *)
Sep 30 1996	1.500 ppb	0.405 (* Nondetect *)
Dec 31 1996	6.000 ppb	1.792`
Mar 31 1997	1.500 ppb	0.405 (* Nondetect *)
Jun 30 1997	1.500 ppb	0.405 (* Nondetect *)
Sep 30 1997	1.500 ppb	0.405 (* Nondetect *)
Dec 31 1997	1.500 ppb	0.405 (* Nondetect *)
Mar 09 1998	1.500 ppb	0.405 (* Nondetect *)
May 14 1998	1.500 ppb	0.405 (* Nondetect *)
Aug 14 1998	1.500 ppb	0.405 (* Nondetect *)
Nov 23 1998	1.500 ppb	0.405 (* Nondetect *)
Mar 13 1999	1.500 ppb	0.405 (* Nondetect *)
May 27 1999	1.500 ppb	0.405 (* Nondetect *)
Jul 27 1999	1.500 ppb	0.405 (* Nondetect *)
Nov 08 1999	1.500 ppb	0.405 (* Nondetect *)
Dec 10 1999	1.500 ppb	0.405 (* Nondetect *)
Dec 11 1999	1.500 ppb	0.405 (* Nondetect *)
Dec 12 1999	1.500 ppb	0.405 (* Nondetect *)
Dec 13 1999	1.500 ppb	0.405 (* Nondetect *)
Dec 14 1999	1.500 ppb	0.405 (* Nondetect *)
Dec 15 1999	1.500 ppb	0.405 (* Nondetect *)
Dec 16 1999	1.500 ppb	0.405 (* Nondetect *)
Dec 17 1999	1.500 ppb	0.405 (* Nondetect *)
Dec 18 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 19 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 20 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 21 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 22 1999	5.000 ppb	1.609 (* Nondetect *)

Dec 23 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 24 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 25 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 26 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 27 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 28 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 29 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 30 1999	5.000 ppb	1.609 (* Nondetect *)

Observations (N): 37 Nondetects (%ND): 97

 Minimum:
 1.500 ppb
 Ln Minimum:
 0.405

 Maximum:
 6.000 ppb
 Ln Maximum:
 1.792

 Mean:
 2.851 ppb
 Ln Mean:
 0.866

 Std. Dev.:
 1.763 ppb
 Ln Std. Dev.:
 0.599

Normality Tests

Report Printed: 05-10-2005 15:34

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:VA Zip:

County:PULASKI

Contact:

Phone:() -

Permit Type: Detection

Constituent: Sb Antimony, total

CAS Number: 7440-36-0

MCL: 0.000 ppb

ACL: 0.000 ppb

Detect Limit: 10.000 ppb

Start Date:Mar 31 1996 End Date:Dec 30 1999

Normality Test on Observations for wells listed below:

Well:13MW1 Position:Upgradient Observations:37

 Scale
 Minimum
 Maximum
 Mean
 Std Dev

 Original:
 1.500
 5.000
 2.730
 1.694

 Log:
 0.405
 1.609
 0.828
 0.583

Well:13MW2 Position:Upgradient Observations:37

Scale Minimum Maximum Mean Std Dev Original: 1.500 6.000 2.851 1.763

Log: 0.405 1.792 0.866 0.599

Pooled Statistics

Observations: 74

Original Statistic Log Scale Scale Mean: 2.791 0.847 Std Dev: 1.718 0.587 Skewness: 0.578 0.566 **Kurtosis:** -1.636 -1.673Minimum: 1.500 0.405 Maximum: 6.000 1.792 CV: 0.616 0.693

Shapiro-Francia Statistics

Test 5% Critical 1% Critical

Scale Statistic Value Value Original: 0.6407* 0.9690 0.9560

Log: 0.6351* 0.9690 0.9560

* Indicates statistically significant evidence of non-normality. GRIT/STAT Version 5.0

1. ND = 997. KORD

Nonparametric Prediction Interval

Report Printed May 10,2005

Facility:Haz. Waste Unit 13 - RAAP Parameter:Antimony, total(CAS Number:7440-36-0)

ONE-TAILED UPPER PARAMETRIC PREDICTION INTERVAL

Observations (n):

Conf. Level $(1-\alpha)$:

.%

UL: 6.0 ppb LL: 0.000

1,ND: 99%.

Report Produced by GRITS/STAT 5.01

Page 1

Report Printed: 05-10-2005 17:22

Facility:RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford County:PULASKI ST:VA Zip:

Contact:

Phone:() -

Permit Type: Detection

Constituent: As Arsenic, total

CAS Number: 7440-38-2

MCL:

ACL:

Detect Limit:

0.000 ppb 0.000 ppb 10.000 ppb

Start Date:Mar 31 1996 End Date: Dec 30 1999

Sample Date	Observation	Ln
Mar 31 1996	0.500 ppb	-0.693 (* Nondetect *)
Jun 30 1996	0.500 ppb	-0.693 (* Nondetect *)
Sep 30 1996	0.500 ppb	-0.693 (* Nondetect *)
Dec 31 1996	0.500 ppb	-0.693 (* Nondetect *)
Mar 31 1997	0.500 ppb	-0.693 (* Nondetect *)
Jun 30 1997	0.500 ppb	-0.693 (* Nondetect *)
Sep 30 1997	0.500 ppb	-0.693 (* Nondetect *)
Dec 31 1997	0.500 ppb	-0.693 (* Nondetect *)
Mar 09 1998	0.500 ppb	-0.693 (* Nondetect *)
May 14 1998		-0.693 (* Nondetect *)
Aug 14 1998	0.500 ppb	-0.693 (* Nondetect *)
Nov 23 1998	3.000 ppb	1.099
Mar 13 1999	1.000 ppb	0.000
May 27 1999	0.500 ppb	-0.693 (* Nondetect *)
Jul 27 1999	0.500 ppb	-0.693 (* Nondetect *)
Nov 08 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 10 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 11 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 12 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 13 1999	2.000 ppb	0.693
Dec 14 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 15 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 16 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 17 1999	0.500 ppb	-0.693 (* Nondetect *)

Dec 18 1999 Dec 19 1999 Dec 20 1999 Dec 21 1999 Dec 22 1999 Dec 23 1999 Dec 24 1999 Dec 25 1999 Dec 26 1999 Dec 27 1999 Dec 28 1999 Dec 28 1999	5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb	1.609 (* Nondetect *)
Dec 28 1999 Dec 29 1999 Dec 30 1999	5.000 ppb 5.000 ppb 5.000 ppb	1.609 (* Nondetect *) 1.609 (* Nondetect *) 1.609 (* Nondetect *)

Observations (N): 37 Nondetects (%ND): 92

 Minimum:
 0.500 ppb
 Ln Minimum:
 -0.693

 Maximum:
 5.000 ppb
 Ln Maximum:
 1.609

 Mean:
 2.203 ppb
 Ln Mean:
 0.220

 Std. Dev.:
 2.139 ppb
 Ln Std. Dev.:
 1.101

Sample Date	Observation	Ln
Mar 31 1996	0.500 ppb	-0.693 (* Nondetect *)
Jun 30 1996	0.500 ppb	-0.693 (* Nondetect *)
Sep 30 1996	0.500 ppb	-0.693 (* Nondetect *)
Dec 31 1996	0.500 ppb	-0.693 (* Nondetect *)
Mar 31 1997	0.500 ppb	-0.693 (* Nondetect *)
Jun 30 1997	0.500 ppb	-0.693 (* Nondetect *)
Sep 30 1997	0.500 ppb	-0.693 (* Nondetect *)
Dec 31 1997	0.500 ppb	-0.693 (* Nondetect *)
Mar 09 1998	0.500 ppb	-0.693 (* Nondetect *)
May 14 1998		-0.693 (* Nondetect *)
Aug 14 1998	0.500 ppb	-0.693 (* Nondetect *)
Nov 23 1998	0.500 ppb	-0.693 (* Nondetect *)
Mar 13 1999	0.500 ppb	-0.693 (* Nondetect *)
May 27 1999		-0.693 (* Nondetect *)
Jul 27 1999	1.000 ppb	0.000
Nov 08 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 10 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 11 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 12 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 13 1999	2.000 ppb	0.693
Dec 14 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 15 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 16 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 17 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 18 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 19 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 20 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 21 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 22 1999	5.000 ppb	1.609 (* Nondetect *)

Dec 23 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 24 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 25 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 26 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 27 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 28 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 29 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 30 1999	5.000 ppb	1.609 (* Nondetect *)

Observations (N): 37 Nondetects (%ND): 95

 Minimum:
 0.500 ppb
 Ln Minimum:
 -0.693

 Maximum:
 5.000 ppb
 Ln Maximum:
 1.609

 Mean:
 2.135 ppb
 Ln Mean:
 0.172

 Std. Dev.:
 2.153 ppb
 Ln Std. Dev.:
 1.101

Normality Tests

Report Printed: 05-10-2005 15:45

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford

ST:VA Zip:

County: PULASKI

Contact:

Phone:() -

Permit Type: Detection

Constituent: As

Arsenic, total

CAS Number: 7440-38-2

MCL: ACL:

0.000 ppb

Detect Limit:

0.000 ppb 10.000 ppb

Start Date:Mar 31 1996

End Date: Dec 30 1999

Normality Test on Observations for wells listed below:

Well:13MW1

Position: Upgradient Observations: 37

Scale Original: Minimum 0.500

Maximum

Mean

Log:

-0.693

5.000 1.609

2.203 0.220

2.139 1.101

Well:13MW2

Position: Upgradient Observations: 37

Scale

Minimum 0.500

Maximum 5.000

Mean 2.135

Std Dev

Std Dev

Original: Log:

-0.693

1.609

0.172

2.153 1.101

Pooled Statistics

Observations:

74

Ctatiatia	0-1-1-1	τ
Statistic	Original	Log
	Casta	C1-

Scale Scale Mean: 2.169 0.196 Std Dev: 2.131 1.094 Skewness: 0.5520.465 **Kurtosis:** -1.649 -1.725

Minimum: Maximum: 0.500 5.000 -0.6931.609 CV: 0.983 5.572

Shapiro-Francia Statistics

Test 5% Critical 1% Critical Scale Statistic Value Value

 Scale Statistic
 Value
 Value

 Original:
 0.6615*
 0.9690
 0.9560

 Log:
 0.6742*
 0.9690
 0.9560

^{*} Indicates statistically significant evidence of non-normality. GRIT/STAT Version 5.0

Nonparametric Prediction Interval Report Printed May 10,2005

Page 1

Facility: Haz. Waste Unit 13 - RAAP Parameter: Arsenic, total (CAS Number: 7440-38-2)

ONE-TAILED UPPER PARAMETRIC PREDICTION INTERVAL

Observations (n):

Conf. Level $(1-\alpha)$:

.%

UL: 0.500 ppb LL: 0.000

% ND:

100%.

BACKGROUND TO COMPLIANCE WELL COMPARISON

Well:13MW3

Sample Date 12/17/99

Øbservation MD < 1.000 ppb

Data Set Summary

Report Printed: 05-10-2005 17:23

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:VA Zip: County:PULASKI

Contact:

Phone:() -

Permit Type: Detection

Constituent:Ba Barium, total

CAS Number: 7440-39-3

MCL:

ACL:

0.000 ppb 0.000 ppb 20.000 ppb Detect Limit:

Start Date:Mar 31 1996 End Date:Dec 30 1999

Sample Date	Observation	Ln
Mar 31 1996	87.000 ppb	4.466
Jun 30 1996	105.000 ppb	4.654
Sep 30 1996	90.000 ppb	4.500
Dec 31 1996	88.000 ppb	4.477
Mar 31 1997	127.000 ppb	4.844
Jun 30 1997	129.000 ppb	4.860
Sep 30 1997	154.000 ppb	5.037
Dec 31 1997	126.000 ppb	4.836
Mar 09 1998	117.000 ppb	4.762
May 14 1998	98.000 ppb	4.585
Aug 14 1998	107.000 ppb	4.673
Nov 23 1998	255.000 ppb	5.541
Mar 13 1999	178.000 ppb	5.182
May 27 1999	85.000 ppb	4.443
Jul 27 1999	103.000 ppb	4.635
Nov 08 1999	128.000 ppb	4.852
Dec 10 1999	96.000 ppb	4.564
Dec 11 1999	91.000 ppb	4.511
Dec 12 1999	81.000 ppb	4.394
Dec 13 1999	111.000 ppb	4.710
Dec 14 1999	115.000 ppb	4.745
Dec 15 1999	81.800 ppb	4.404
Dec 16 1999	112.000 ppb	4.718
Dec 17 1999	132.000 ppb	4.883

Dec 18 1999	127.000 ppb	4.844
Dec 19 1999	107.000 ppb	4.673
Dec 20 1999	132.000 ppb	4.883
Dec 21 1999	143.000 ppb	4.963
Dec 22 1999	110.000 ppb	4.700
Dec 23 1999	78.000 ppb	4.357
Dec 24 1999	89.500 ppb	4.494
Dec 25 1999	120.000 ppb	4.787
Dec 26 1999	98.800 ppb	4.593
Dec 27 1999	96.300 ppb	4.567
Dec 28 1999	97.100 ppb	4.576
Dec 29 1999	106.000 ppb	4.663
Dec 30 1999	101.000 ppb	4.615

Well ID:13MW1 Summary Statistics

Observations (N): 37 Nondetects (%ND): 0

 Minimum:
 78.000 ppb
 Ln Minimum:
 4.357

 Maximum:
 255.000 ppb
 Ln Maximum:
 5.541

 Mean:
 113.581 ppb
 Ln Mean:
 4.703

 Std. Dev.:
 32.212 ppb
 Ln Std. Dev.:
 0.235

Sample Date	Observation	Ln
Mar 31 1996	134.000 ppb	4.898
Jun 30 1996	139.000 ppb	4.934
Sep 30 1996	128.000 ppb	4.852
Dec 31 1996	110.000 ppb	4.700
Mar 31 1997	137.000 ppb	4.920
Jun 30 1997	125.000 ppb	4.828
Sep 30 1997	140.000 ppb	4.942
Dec 31 1997	141.000 ppb	4.949
Mar 09 1998	220.000 ppb	5.394
May 14 1998	159.000 ppb	5.069
Aug 14 1998	151.000 ppb	5.017
Nov 23 1998	172.000 ppb	5.147
Mar 13 1999	168.000 ppb	5.124
May 27 1999	153.000 ppb	5.030
Jul 27 1999	124.000 ppb	4.820
Nov 08 1999	146.000 ppb	4.984
Dec 10 1999	138.000 ppb	4.927
Dec 11 1999	145.000 ppb	4.977
Dec 12 1999	130.000 ppb	4.868
Dec 13 1999	135.000 ppb	4.905
Dec 14 1999	131.000 ppb	4.875
Dec 15 1999	147.000 ppb	4.990
Dec 16 1999	148.000 ppb	4.997
Dec 17 1999	155.000 ppb	5.043
Dec 18 1999	128.000 ppb	4.852
Dec 19 1999	148.000 ppb	4.997
Dec 20 1999	148.000 ppb	4.997
Dec 21 1999	142.000 ppb	4.956
Dec 22 1999	153.000 ppb	5.030

Dec 23 1999	172.000 ppb	5.147
Dec 24 1999	168.000 ppb	5.124
Dec 25 1999	152.000 ppb	5.024
Dec 26 1999	174.000 ppb	5.159
Dec 27 1999	168.000 ppb	5.124
Dec 28 1999	154.000 ppb	5.037
Dec 29 1999	171.000 ppb	5.142
Dec 30 1999	180.000 ppb	5.193
	* 7	

Well ID:13MW2 Summary Statistics

Observations (N): 37 Nondetects (%ND): 0

 Minimum:
 110.000 ppb
 Ln Minimum:
 4.700

 Maximum:
 220.000 ppb
 Ln Maximum:
 5.394

 Mean:
 149.568 ppb
 Ln Mean:
 4.999

 Std. Dev.:
 20.240 ppb
 Ln Std. Dev.:
 0.130

Normality Tests

Report Printed: 05-10-2005 15:54

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford

ST:VA Zip:

County: PULASKI

Contact:

Phone:() -

Permit Type: Detection

Constituent:Ba

Barium, total

CAS Number: 7440-39-3

MCL:

0.000 ppb

ACL:

0.000 ppb

Detect Limit:

20.000 ppb

Start Date: Mar 31 1996 End Date: Dec 30 1999

Normality Test on Observations for wells listed below:

Well:13MW1

Position: Upgradient Observations: 37

Scale Original: Minimum 78.000

Maximum

Std Dev Mean

Log:

255.000

113.581

32.212

4.357

5.541

4.703

0.235

Well:13MW2 Position: Upgradient Observations: 37

Scale

Minimum 110.000

Maximum 220.000

Mean 149.568

Std Dev 20.240

Original: Log:

4.700

5.394

4.999

0.130

Pooled Statistics

Observations:

74

Statistic

Original Scale

Log Scale

Mean:

131.574

4.851

Std Dev: Skewness: 32.278 0.845

0.241 0.030

Kurtosis: Minimum: 1.800 78.000 -0.1184.357

Maximum:

255.000

5.541

CV: 0.245 0.050

Shapiro-Francia Statistics

Test 5% Critical 1% Critical Scale Statistic Value Value Original: 0.9407* Log: 0.9794 0.9690 0.9560 0.9560 0.9690

^{*} Indicates statistically significant evidence of non-normality. GRIT/STAT Version 5.0

Parametric Prediction Interval Report Printed May 10,2005

Page 1

Facility: Haz. Waste Unit 13 - RAAP

Parameter: Barium, total(CAS Number: 7440-39-3)

ONE-TAILED UPPER PARAMETRIC PREDICTION INTERVAL

Observations (n): 74 Shapiro-Francia (W): 0.9794 Critical W, $\alpha = 0.01$: 0.9560 Mean: 4.851 ln(ppb) Std Dev: $0.241 \ln(ppb)$ DF: 73 Conf. Level $(1-\alpha)$: 0.9500 Future Samples (k): 5 $t - 1 - \alpha - :$ $k - 1 - \alpha - :$ 2.3785 Kappa: 2.3945 UL: 227.572 ppb LL: 0.000

1,ND: 0 /.

Data Set Summary

Report Printed: 05-10-2005 17:23

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:VA Zip: County: PULASKI

Contact: Phone:() -

Permit Type:Detection

Constituent:Cr Chromium, total

CAS Number: 7440-47-3 0.000 ppb MCL:

ACL:

0.000 ppb 10.000 ppb Detect Limit:

Start Date:Mar 31 1996 End Date:Dec 30 1999

Sample Date	Observation	Ln
Mar 31 1996	11.000 ppb	2.398
Jun 30 1996		2.565
Sep 30 1996	56.000 ppb	4.025
Dec 31 1996	20.000 ppb	2.996
Mar 31 1997	22.000 ppb	3.091
Jun 30 1997	19.000 ppb	2.944
Sep 30 1997	40.000 ppb	3.689
Dec 31 1997	23.000 ppb	3.135
Mar 09 1998	55.000 ppb	4.007
May 14 1998		1.792
Aug 14 1998	9.000 ppb	2.197
Nov 23 1998	112.000 ppb	4.718
Mar 13 1999	108.000 ppb	4.682
May 27 1999		1.099
Jul 27 1999	2.000 ppb	0.693
Nov 08 1999	15.000 ppb	2.708
Dec 10 1999	2.000 ppb	0.693
Dec 11 1999	2.000 ppb	0.693
Dec 12 1999	2.000 ppb	0.693
Dec 13 1999	4.000 ppb	1.386
Dec 14 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 15 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 16 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 17 1999	0.500 ppb	-0.693 (* Nondetect *)

Dec 18 1999 Dec 19 1999 Dec 20 1999 Dec 21 1999 Dec 22 1999 Dec 23 1999 Dec 24 1999 Dec 25 1999 Dec 26 1999 Dec 27 1999 Dec 28 1999 Dec 29 1999	5.000 ppb 5.000 ppb	1.609 (* Nondetect *)
Dec 28 1999 Dec 29 1999 Dec 30 1999	5.000 ppb 5.000 ppb 5.000 ppb	1.609 (* Nondetect *) 1.609 (* Nondetect *) 1.609 (* Nondetect *)

Well ID:13MW1 Summary Statistics

Observations (N): 37 Nondetects (%ND): 46

 Minimum:
 0.500 ppb
 Ln Minimum:
 -0.693

 Maximum:
 112.000 ppb
 Ln Maximum:
 4.718

 Mean:
 15.973 ppb
 Ln Mean:
 1.847

 Std. Dev.:
 26.511 ppb
 Ln Std. Dev.:
 1.386

Sample Date	Observation	Ln
Mar 31 1996	13.000 ppb	2.565
Jun 30 1996	10.000 ppb	2.303
Sep 30 1996	11.000 ppb	2.398
Dec 31 1996	14.000 ppb	2.639
Mar 31 1997	10.000 ppb	2.303
Jun 30 1997	10.000 ppb	2.303
Sep 30 1997	19.000 ppb	2.944
Dec 31 1997	12.000 ppb	2.485
Mar 09 1998	12.000 ppb	2.485
May 14 1998	7.000 ppb	1.946
Aug 14 1998	17.000 ppb	2.833
Nov 23 1998	20.000 ppb	2.996
Mar 13 1999	9.000 ppb	2.197
May 27 1999	6.000 ppb	1.792
Jul 27 1999	6.000 ppb	1.792
Nov 08 1999	6.000 ppb	1.792
Dec 10 1999	4.000 ppb	1.386
Dec 11 1999	6.000 ppb	1.792
Dec 12 1999	2.000 ppb	0.693
Dec 13 1999	5.000 ppb	1.609
Dec 14 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 15 1999	10.700 ppb	2.370
Dec 16 1999	9.210 ppb	2.220
Dec 17 1999	7.020 ppb	1.949
Dec 18 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 19 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 20 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 21 1999	57.600 ppb	4.054
Dec 22 1999	10.300 ppb	2.332

Dec 23 1999	6.300 ppb	1.841
Dec 24 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 25 1999	6.000 ppb	1.792
Dec 26 1999	7.600 ppb	2.028
Dec 27 1999	5.500 ppb	1.705
Dec 28 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 29 1999	7.400 ppb	2.001
Dec 30 1999	7.600 ppb	2.028

Well ID:13MW2 Summary Statistics

Observations (N): 37 Nondetects (%ND): 16

 Minimum:
 0.500 ppb
 Ln Minimum:
 -0.693

 Maximum:
 57.600 ppb
 Ln Maximum:
 4.054

 Mean:
 9.722 ppb
 Ln Mean:
 2.025

 Std. Dev.:
 9.158 ppb
 Ln Std. Dev.:
 0.733

Normality Tests

Report Printed: 05-10-2005 15:57

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:VA Zip: County:PULASKI

Contact:

Phone:() -

Permit Type: Detection

Constituent: Cr Chromium, total

CAS Number: 7440-47-3

MCL: 0.000 ppb

ACL: 0.000 ppb Detect Limit: 10.000 ppb

Start Date:Mar 31 1996 End Date:Dec 30 1999

Normality Test on Observations for wells listed below:

Well:13MW1 Position:Upgradient Observations:37

 Scale
 Minimum
 Maximum
 Mean
 Std Dev

 Original:
 0.500
 112.000
 15.973
 26.511

 Log:
 -0.693
 4.718
 1.847
 1.386

Well:13MW2 Position:Upgradient Observations:37

 Scale
 Minimum
 Maximum
 Mean
 Std Dev

 Original:
 0.500
 57.600
 9.722
 9.158

 Log:
 -0.693
 4.054
 2.025
 0.733

Pooled Statistics

Observations: 74

Statistic Original Log Scale Scale Mean: 12.848 1.936 Std Dev: 19.947 1.105 Skewness: 3.603* -0.168**Kurtosis:** 13.679 1.161 Minimum: 0.500 -0.693Maximum: 112.000 4.718 CV: 1.553 0.570

Shapiro-Francia Statistics

Test 5% Critical 1% Critical Scale Statistic Value Value Original: 0.4961* Log: 0.9189* 0.9690 0.9560 0.9690 0.9560

^{*} Indicates statistically significant evidence of non-normality. GRIT/STAT Version 5.0

Nonparametric Prediction Interval

Report Printed May 10,2005

Facility:Haz. Waste Unit 13 - RAAP Parameter:Chromium, total(CAS Number:7440-47-3)

ONE-TAILED UPPER PARAMETRIC PREDICTION INTERVAL

Observations (n):

Conf. Level $(1-\alpha)$:

.%

UL: 0.000 ppb

YND: 317.

Page 1

Data Set Summary

Report Printed: 05-10-2005 17:23

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:VA Zip: County:PULASKI

Contact:
Phone:() -

Permit Type: Detection

Constituent:Pb Lead, total

Start Date:Mar 31 1996 End Date:Dec 30 1999

Sample Date	Observation	Ln
Mar 31 1996	1.000 ppb	0.000
Jun 30 1996	1.000 ppb	0.000
Sep 30 1996	2.000 ppb	0.693
Dec 31 1996	4.000 ppb	1.386
Mar 31 1997	14.000 ppb	2.639
Jun 30 1997	9.000 ppb	2.197
Sep 30 1997	8.000 ppb	2.079
Dec 31 1997	5.000 ppb	1.609
Mar 09 1998	2.000 ppb	0.693
May 14 1998	0.500 ppb	-0.693 (* Nondetect *)
Aug 14 1998	0.500 ppb	-0.693 (* Nondetect *)
Nov 23 1998	6.000 ppb	1.792
Mar 13 1999	6.000 ppb	1.792
May 27 1999	0.500 ppb	-0.693 (* Nondetect *)
Jul 27 1999	0.500 ppb	-0.693 (* Nondetect *)
Nov 08 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 10 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 11 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 12 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 13 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 14 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 15 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 16 1999	3.200 ppb	1.163
Dec 17 1999	0.500 ppb	-0.693 (* Nondetect *)

Dec 18 1999 Dec 19 1999 Dec 20 1999 Dec 21 1999 Dec 22 1999 Dec 23 1999 Dec 24 1999 Dec 25 1999 Dec 26 1999 Dec 27 1999 Dec 28 1999	5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb	1.609 (* Nondetect *)

Well ID:13MW1 Summary Statistics

Observations (N): 37 Nondetects (%ND): 68

 Minimum:
 0.500 ppb
 Ln Minimum:
 -0.693

 Maximum:
 14.000 ppb
 Ln Maximum:
 2.639

 Mean:
 3.573 ppb
 Ln Mean:
 0.774

 Std. Dev.:
 3.027 ppb
 Ln Std. Dev.:
 1.138

Mar 31 1996 2.000 ppb 0.693 Jun 30 1996 4.000 ppb 1.386 Sep 30 1996 2.000 ppb 0.693 Dec 31 1996 6.000 ppb 1.792 Mar 31 1997 0.500 ppb -0.693 (* Nondetect *) Jun 30 1997 7.000 ppb 1.946 Sep 30 1997 6.000 ppb 1.609 Mar 09 1998 3.000 ppb 1.609 Mar 1998 0.500 ppb -0.693 (* Nondetect *) Aug 14 1998 0.500 ppb -0.693 (* Nondetect *) Nov 23 1998 1.000 ppb 0.693 Mar 13 1999 2.000 ppb 0.693 May 27 1999 0.500 ppb -0.693 (* Nondetect *) Jul 27 1999 0.500 ppb -0.693 (* Nondetect *) Dec 10 1999 0.500 ppb -0.693 (* Nondetect *) Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 0.500 ppb -0.693 (* Nondetect *) Dec 14 1999 0.500 ppb -0.693 (* Nondetect *)	Sample Date	Observation	Ln
Jun 30 1996 4.000 ppb 1.386 Sep 30 1996 2.000 ppb 0.693 Dec 31 1997 0.500 ppb 1.792 Mar 31 1997 7.000 ppb 1.946 Sep 30 1997 6.000 ppb 1.946 Sep 30 1997 5.000 ppb 1.609 Mar 09 1998 3.000 ppb 1.099 May 14 1998 0.500 ppb -0.693 (* Nondetect *) Aug 14 1998 0.500 ppb -0.693 (* Nondetect *) Nov 23 1998 1.000 ppb 0.693 May 27 1999 0.500 ppb -0.693 (* Nondetect *) Jul 27 1999 0.500 ppb -0.693 (* Nondetect *) Jul 27 1999 0.500 ppb -0.693 (* Nondetect *) Dec 10 1999 0.500 ppb -0.693 (* Nondetect *) Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 0.500 ppb -0.693 (* Nondetect *) Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) <			0.693
Dec 31 1996 6.000 ppb 1.792 Mar 31 1997 0.500 ppb -0.693 (* Nondetect *) Jun 30 1997 7.000 ppb 1.946 Sep 30 1997 6.000 ppb 1.792 Dec 31 1997 5.000 ppb 1.609 Mar 09 1998 3.000 ppb 1.099 May 14 1998 0.500 ppb -0.693 (* Nondetect *) Aug 14 1998 0.500 ppb -0.693 (* Nondetect *) Nov 23 1998 1.000 ppb 0.693 Mar 13 1999 2.000 ppb -0.693 May 27 1999 0.500 ppb -0.693 Nov 08 1999 0.500 ppb -0.693 (* Nondetect *) Dec 10 1999 0.500 ppb -0.693 (* Nondetect *) Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 0.500 ppb -0.693 (* Nondetect *) Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *)	Jun 30 1996		1.386
Dec 31 1996 6.000 ppb 1.792 Mar 31 1997 0.500 ppb -0.693 (* Nondetect *) Jun 30 1997 7.000 ppb 1.946 Sep 30 1997 6.000 ppb 1.792 Dec 31 1997 5.000 ppb 1.609 Mar 09 1998 3.000 ppb 1.099 May 14 1998 0.500 ppb -0.693 (* Nondetect *) Aug 14 1998 0.500 ppb -0.693 (* Nondetect *) Nov 23 1998 1.000 ppb 0.693 Mar 13 1999 2.000 ppb -0.693 May 27 1999 0.500 ppb -0.693 Nov 08 1999 0.500 ppb -0.693 (* Nondetect *) Dec 10 1999 0.500 ppb -0.693 (* Nondetect *) Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 0.500 ppb -0.693 (* Nondetect *) Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *)	Sep 30 1996		0.693
Jun 30 1997 7.000 ppb 1.946 Sep 30 1997 6.000 ppb 1.792 Dec 31 1997 5.000 ppb 1.609 Mar 09 1998 3.000 ppb 1.099 May 14 1998 0.500 ppb -0.693 (* Nondetect *) Aug 14 1998 0.500 ppb -0.693 (* Nondetect *) Nov 23 1998 1.000 ppb 0.693 Mar 13 1999 2.000 ppb -0.693 (* Nondetect *) Jul 27 1999 0.500 ppb -0.693 (* Nondetect *) Dec 10 1999 0.500 ppb -0.693 (* Nondetect *) Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 0.500 ppb -0.693 (* Nondetect *) Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb -0.693 (* Nondetect *) Dec 20 1999 5.	Dec 31 1996		1.792
Sep 30 1997 6.000 ppb 1.792 Dec 31 1997 5.000 ppb 1.609 Mar 09 1998 3.000 ppb 1.099 May 14 1998 0.500 ppb -0.693 (* Nondetect *) Aug 14 1998 0.500 ppb -0.693 (* Nondetect *) Nov 23 1998 1.000 ppb 0.693 May 27 1999 2.000 ppb -0.693 (* Nondetect *) Jul 27 1999 0.500 ppb -0.693 (* Nondetect *) Dec 10 1999 0.500 ppb -0.693 (* Nondetect *) Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 0.500 ppb -0.693 (* Nondetect *) Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb -0.693 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 </td <td>Mar 31 1997</td> <td>0.500 ppb</td> <td>-0.693 (* Nondetect *)</td>	Mar 31 1997	0.500 ppb	-0.693 (* Nondetect *)
Dec 31 1997 5.000 ppb 1.609 Mar 09 1998 3.000 ppb 1.099 May 14 1998 0.500 ppb -0.693 (* Nondetect *) Aug 14 1998 0.500 ppb -0.693 (* Nondetect *) Nov 23 1998 1.000 ppb 0.000 Mar 13 1999 2.000 ppb 0.693 May 27 1999 0.500 ppb -0.693 (* Nondetect *) Jul 27 1999 2.000 ppb -0.693 Nov 08 1999 0.500 ppb -0.693 (* Nondetect *) Dec 10 1999 0.500 ppb -0.693 (* Nondetect *) Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 0.500 ppb -0.693 (* Nondetect *) Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb -0.693 (* Nondetect *) Dec 20 1999 5.000 pp	Jun 30 1997	7.000 ppb	1.946
Mar 09 1998 3.000 ppb 1.099 May 14 1998 0.500 ppb -0.693 (* Nondetect *) Aug 14 1998 0.500 ppb -0.693 (* Nondetect *) Nov 23 1998 1.000 ppb 0.000 Mar 13 1999 2.000 ppb 0.693 May 27 1999 0.500 ppb -0.693 (* Nondetect *) Jul 27 1999 0.500 ppb -0.693 (* Nondetect *) Dec 10 1999 0.500 ppb -0.693 (* Nondetect *) Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 0.500 ppb -0.693 (* Nondetect *) Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb -0.693 (* Nondetect *) Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 5.000 ppb 1.609 (* Nondetect *) ្/tabl	Sep 30 1997		1.792
May 14 1998 0.500 ppb -0.693 (* Nondetect *) Aug 14 1998 0.500 ppb -0.693 (* Nondetect *) Nov 23 1998 1.000 ppb 0.000 Mar 13 1999 2.000 ppb 0.693 May 27 1999 0.500 ppb -0.693 (* Nondetect *) Jul 27 1999 0.500 ppb -0.693 (* Nondetect *) Dec 10 1999 0.500 ppb -0.693 (* Nondetect *) Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 0.500 ppb -0.693 (* Nondetect *) Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb -0.693 (* Nondetect *) Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 5.000 ppb 1.609 (* Nondetect *)		5.000 ppb	1.609
May 14 1998 0.500 ppb -0.693 (* Nondetect *) Aug 14 1998 0.500 ppb -0.693 (* Nondetect *) Nov 23 1998 1.000 ppb 0.000 Mar 13 1999 2.000 ppb 0.693 May 27 1999 0.500 ppb -0.693 (* Nondetect *) Jul 27 1999 0.500 ppb -0.693 (* Nondetect *) Dec 10 1999 0.500 ppb -0.693 (* Nondetect *) Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 0.500 ppb -0.693 (* Nondetect *) Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb -0.693 (* Nondetect *) Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 5.000 ppb 1.609 (* Nondetect *)	Mar 09 1998	3.000 ppb	1.099
Nov 23 1998 1.000 ppb 0.000 Mar 13 1999 2.000 ppb 0.693 May 27 1999 0.500 ppb -0.693 (* Nondetect *) Jul 27 1999 2.000 ppb 0.693 Nov 08 1999 0.500 ppb -0.693 (* Nondetect *) Dec 10 1999 0.500 ppb -0.693 (* Nondetect *) Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 0.500 ppb -0.693 (* Nondetect *) Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb 1.609 (* Nondetect *) Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 5.000 ppb 1.609 (* Nondetect *)			-0.693 (* Nondetect *)
Mar 13 1999 2.000 ppb 0.693 May 27 1999 0.500 ppb -0.693 (* Nondetect *) Jul 27 1999 2.000 ppb 0.693 Nov 08 1999 0.500 ppb -0.693 (* Nondetect *) Dec 10 1999 0.500 ppb -0.693 (* Nondetect *) Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 0.500 ppb -0.693 (* Nondetect *) Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb -0.693 (* Nondetect *) Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 5.000 ppb 1.609 (* Nondetect *)			-0.693 (* Nondetect *)
May 27 1999 0.500 ppb -0.693 (* Nondetect *) Jul 27 1999 2.000 ppb 0.693 Nov 08 1999 0.500 ppb -0.693 (* Nondetect *) Dec 10 1999 0.500 ppb -0.693 (* Nondetect *) Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 0.500 ppb -0.693 (* Nondetect *) Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb 1.609 (* Nondetect *) Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 5.000 ppb 1.609 (* Nondetect *)		1.000 ppb	0.000
Jul 27 1999 2.000 ppb 0.693 Nov 08 1999 0.500 ppb -0.693 (* Nondetect *) Dec 10 1999 0.500 ppb -0.693 (* Nondetect *) Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 0.500 ppb -0.693 (* Nondetect *) Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb 1.609 (* Nondetect *) Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 5.000 ppb 1.609 (* Nondetect *)	Mar 13 1999	2.000 ppb	0.693
Nov 08 1999 0.500 ppb -0.693 (* Nondetect *) Dec 10 1999 0.500 ppb -0.693 (* Nondetect *) Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 0.500 ppb -0.693 (* Nondetect *) Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb 1.609 (* Nondetect *) Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 5.000 ppb 1.609 (* Nondetect *)		0.500 ppb	-0.693 (* Nondetect *)
Dec 10 1999 0.500 ppb -0.693 (* Nondetect *) Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 0.500 ppb -0.693 (* Nondetect *) Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb 1.609 (* Nondetect *) Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 5.000 ppb 1.609 (* Nondetect *)	Jul 27 1999		0.693
Dec 11 1999 0.500 ppb -0.693 (* Nondetect *) Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 0.500 ppb -0.693 (* Nondetect *) Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb 1.609 (* Nondetect *) Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 5.000 ppb 1.609 (* Nondetect *)		0.500 ppb	-0.693 (* Nondetect *)
Dec 12 1999 0.500 ppb -0.693 (* Nondetect *) Dec 13 1999 0.500 ppb -0.693 (* Nondetect *) Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb 1.609 (* Nondetect *) Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 5.000 ppb 1.609 (* Nondetect *)	Dec 10 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 13 1999 0.500 ppb -0.693 (* Nondetect *) Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb 1.609 (* Nondetect *) Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 5.000 ppb 1.609 (* Nondetect *)		0.500 ppb	-0.693 (* Nondetect *)
Dec 13 1999 0.500 ppb -0.693 (* Nondetect *) Dec 14 1999 0.500 ppb -0.693 (* Nondetect *) Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb 1.609 (* Nondetect *) Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 5.000 ppb 1.609 (* Nondetect *)		0.500 ppb	-0.693 (* Nondetect *)
Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb 1.609 (* Nondetect *) Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 5.000 ppb 1.609 (* Nondetect *)	Dec 13 1999	0.500 ppb	
Dec 15 1999 0.500 ppb -0.693 (* Nondetect *) Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb 1.609 (* Nondetect *) Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 5.000 ppb 1.609 (* Nondetect *)	Dec 14 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 16 1999 0.500 ppb -0.693 (* Nondetect *) Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb 1.609 (* Nondetect *) Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 5.000 ppb 1.609 (* Nondetect *) 1.609 (* Nondetect *) 1.609 (* Nondetect *)	Dec 15 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 17 1999 0.500 ppb -0.693 (* Nondetect *) Dec 18 1999 5.000 ppb 1.609 (* Nondetect *) Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 5.000 ppb 1.609 (* Nondetect *) 1.609 (* Nondetect *) 1.609 (* Nondetect *)	Dec 16 1999	0.500 ppb	-0.693 (* Nondetect *)
Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 5.000 ppb 1.609 (* Nondetect *)	Dec 17 1999	0.500 ppb	
Dec 19 1999 5.000 ppb 1.609 (* Nondetect *) Dec 20 1999 5.000 ppb 1.609 (* Nondetect *) Dec 21 1999 5.000 ppb 1.609 (* Nondetect *)		5.000 ppb	1.609 (* Nondetect *)
Dec 21 1999 5.000 ppb 1.609 (* Nondetect *)			
Dec 21 1999 5.000 ppb 1.609 (* Nondetect *)		5.000 ppb	
22 1999 3.000 pp0 1.009 (* Nondetect *)	Dec 22 1999	5.000 ppb	1.609 (* Nondetect *)

Dec 23 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 24 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 25 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 26 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 27 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 28 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 29 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 30 1999	5.000 ppb	1.609 (* Nondetect *)

Well ID:13MW2 Summary Statistics

Observations (N): 37 Nondetects (%ND): 70

 Minimum:
 0.500 ppb
 Ln Minimum:
 -0.693

 Maximum:
 7.000 ppb
 Ln Maximum:
 1.946

 Mean:
 3.014 ppb
 Ln Mean:
 0.657

 Std. Dev.:
 2.238 ppb
 Ln Std. Dev.:
 1.078

Normality Tests

Report Printed: 05-10-2005 16:25

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:VA Zip: County:PULASKI

Contact:

Phone:() -

Permit Type: Detection

Constituent:Pb

Lead, total

CAS Number: 7439-92-1

MCL: 0.0

0.000 ppb

ACL:

0.000 ppb

Detect Limit:

10.000 ppb

Start Date:Mar 31 1996 End Date:Dec 30 1999

Normality Test on Observations for wells listed below:

Well:13MW1 Position: Upgradient Observations:37

Scale Minimum Maximum Mean Std Dev Original: 0.500 14.000 3.573 3.027

Log: -0.693 2.639 0.774 1.138

Well:13MW2 Position:Upgradient Observations:37

Scale Minimum Maximum Mean Std Dev Original: 0.500 7.000 3.014 2.238

Log: -0.693 1.946 0.657 1.078

Pooled Statistics

Observations: 74

Statistic Original Log Scale Scale Mean: 3.293 0.716 Std Dev: 2.658 1.102 Skewness: 0.876 -0.314**Kurtosis:** 1.714 -1.614Minimum: 0.500 -0.693Maximum: 14.000 2.639 CV: 0.807 1.540

Shapiro-Francia Statistics

Test 5% Critical 1% Critical Scale Statistic Value Value Original: 0.8098* Log: 0.7963* 0.9690 0.9560 0.9690 0.9560

^{*} Indicates statistically significant evidence of non-normality. GRIT/STAT Version 5.0

Nonparametric Prediction Interval Report Printed May 10,2005

Page 1

Facility:Haz. Waste Unit 13 - RAAP Parameter:Lead, total(CAS Number:7439-92-1)

ONE-TAILED UPPER PARAMETRIC PREDICTION INTERVAL

Observations (n):

100.000%

Conf. Level $(1-\alpha)$:

UL: 4.0 ppb LL: 0.000

YND: 69 %.

Data Set Summary

Report Printed: 05-10-2005 17:23

Facility:RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford County:PULASKI ST:VA Zip:

Contact:

Phone:() -

Permit Type: Detection

Mercury Constituent:Hg

CAS Number: 7439-97-6

MCL:

ACL:

0.000 ppb 0.000 ppb 4.000 ppb Detect Limit:

Start Date:Mar 31 1996 End Date:Dec 30 1999

Sample Date	Observation	Ln
Mar 31 1996	0.100 ppb	-2.303 (* Nondetect *)
Jun 30 1996	0.100 ppb	-2.303 (* Nondetect *)
Sep 30 1996	0.100 ppb	-2.303 (* Nondetect *)
Dec 31 1996	0.100 ppb	-2.303 (* Nondetect *)
Mar 31 1997	0.100 ppb	-2.303 (* Nondetect *)
Jun 30 1997	0.100 ppb	-2.303 (* Nondetect *)
Sep 30 1997	0.100 ppb	-2.303 (* Nondetect *)
Dec 31 1997	0.100 ppb	-2.303 (* Nondetect *)
Mar 09 1998	0.100 ppb	-2.303 (* Nondetect *)
May 14 1998		-2.303 (* Nondetect *)
Aug 14 1998	0.100 ppb	-2.303 (* Nondetect *)
Nov 23 1998	0.100 ppb	-2.303 (* Nondetect *)
Mar 13 1999	0.100 ppb	-2.303 (* Nondetect *)
May 27 1999		-2.303 (* Nondetect *)
Jul 27 1999	0.100 ppb	-2.303 (* Nondetect *)
Nov 08 1999	$0.100 \mathrm{ppb}$	-2.303 (* Nondetect *)
Dec 10 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 11 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 12 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 13 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 14 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 15 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 16 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 17 1999	0.100 ppb	-2.303 (* Nondetect *)

Dec 18 1999 Dec 19 1999 Dec 20 1999 Dec 21 1999 Dec 22 1999 Dec 23 1999 Dec 24 1999 Dec 25 1999 Dec 26 1999 Dec 27 1999 Dec 28 1999 Dec 29 1999	2.000 ppb 2.000 ppb	0.693 (* Nondetect *)
	2.000 ppb 2.000 ppb 2.000 ppb	0.693 (* Nondetect *) 0.693 (* Nondetect *) 0.693 (* Nondetect *)

Well ID:13MW1 Summary Statistics

Observations (N): 37 Nondetects (%ND):100

 Minimum:
 0.100 ppb
 Ln Minimum:
 -2.303

 Maximum:
 2.000 ppb
 Ln Maximum:
 0.693

 Mean:
 0.768 ppb
 Ln Mean:
 -1.250

 Std. Dev.:
 0.920 ppb
 Ln Std. Dev.:
 1.450

Sample Date	Observation	Ln
Mar 31 1996	0.100 ppb	-2.303 (* Nondetect *)
Jun 30 1996	0.100 ppb	-2.303 (* Nondetect *)
Sep 30 1996	0.100 ppb	-2.303 (* Nondetect *)
Dec 31 1996	0.100 ppb	-2.303 (* Nondetect *)
Mar 31 1997	0.100 ppb	-2.303 (* Nondetect *)
Jun 30 1997	0.100 ppb	-2.303 (* Nondetect *)
Sep 30 1997	0.100 ppb	-2.303 (* Nondetect *)
Dec 31 1997	0.100 ppb	-2.303 (* Nondetect *)
Mar 09 1998	0.100 ppb	-2.303 (* Nondetect *)
May 14 1998	0.100 ppb	-2.303 (* Nondetect *)
Aug 14 1998	0.100 ppb	-2.303 (* Nondetect *)
Nov 23 1998	0.100 ppb	-2.303 (* Nondetect *)
Mar 13 1999	0.100 ppb	-2.303 (* Nondetect *)
May 27 1999	0.100 ppb	-2.303 (* Nondetect *)
Jul 27 1999	0.100 ppb	-2.303 (* Nondetect *)
Nov 08 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 10 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 11 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 12 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 13 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 14 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 15 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 16 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 17 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 18 1999	2.000 ppb	0.693 (* Nondetect *)
Dec 19 1999	2.000 ppb	0.693 (* Nondetect *)
Dec 20 1999	2.520 ppb	0.924
Dec 21 1999	2.000 ppb	0.693 (* Nondetect *)
Dec 22 1999	2.000 ppb	0.693 (* Nondetect *)

Dec 23 1999	2.000 ppb	0.693 (* Nondetect *)
Dec 24 1999	2.000 ppb	0.693 (* Nondetect *)
Dec 25 1999	2.000 ppb	0.693 (* Nondetect *)
Dec 26 1999	2.000 ppb	0.693 (* Nondetect *)
Dec 27 1999	2.000 ppb	0.693 (* Nondetect *)
Dec 28 1999	2.000 ppb	0.693 (* Nondetect *)
Dec 29 1999	2.000 ppb	0.693 (* Nondetect *)
Dec 30 1999	2.000 ppb	0.693 (* Nondetect *)

Well ID:13MW2 Summary Statistics

Observations (N): 37 Nondetects (%ND): 97

 Minimum:
 0.100 ppb
 Ln Minimum:
 -2.303

 Maximum:
 2.520 ppb
 Ln Maximum:
 0.924

 Mean:
 0.782 ppb
 Ln Mean:
 -1.244

 Std. Dev.:
 0.943 ppb
 Ln Std. Dev.:
 1.459

Normality Tests

Report Printed: 05-10-2005 16:28

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:VA Zip: County:PULASKI

Contact:

Phone:() -

Permit Type: Detection

Constituent:Hg Mercury

CAS Number: 7439-97-6

MCL: 0.000 ppb

ACL: 0.000 ppb

Detect Limit: 4.000 ppb

Start Date:Mar 31 1996 End Date:Dec 30 1999

Normality Test on Observations for wells listed below:

Well:13MW1 Position:Upgradient Observations:37

 Scale
 Minimum
 Maximum
 Mean
 Std Dev

 Original:
 0.100
 2.000
 0.768
 0.920

 Log:
 -2.303
 0.693
 -1.250
 1.450

Well:13MW2 Position:Upgradient Observations:37

 Scale
 Minimum
 Maximum
 Mean
 Std Dev

 Original:
 0.100
 2.520
 0.782
 0.943

 Log:
 -2.303
 0.924
 -1.244
 1.459

Pooled Statistics

Observations: 74

Statistic Original Log Scale Scale Mean: 0.775 -1.2471.444 Std Dev: 0.9250.624 Skewness: 0.638 **Kurtosis:** -1.565 -1.609Minimum: 0.100 -2.303Maximum: 2.520 0.924 CV: 1.194 -1.158

Shapiro-Francia Statistics

Test 5% Critical 1% Critical Scale Statistic Value Value Original: 0.6336* Log: 0.6250* 0.9690 0.9560 0.9690 0.9560

^{*} Indicates statistically significant evidence of non-normality. GRIT/STAT Version 5.0

Nonparametric Prediction Interval

Report Printed May 10,2005

Facility:Haz. Waste Unit 13 - RAAP Parameter:Mercury(CAS Number:7439-97-6)

ONE-TAILED UPPER PARAMETRIC PREDICTION INTERVAL

Observations (n):

74

Conf. Level $(1-\alpha)$:

100.000%

UL: 0.000 ppb

-/.ND: ~99 Y.

Report Produced by GRITS/STAT 5.01

Page 1

Data Set Summary

Report Printed: 05-10-2005 17:24

Facility:RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:VA Zip: County: PULASKI

Contact:

Phone:() -

Permit Type:Detection

Constituent: Ag Silver, total

CAS Number: 7440-22-4

MCL:

ACL:

0.000 ppb 0.000 ppb 4.000 ppb Detect Limit:

Start Date:Mar 31 1996 End Date:Dec 30 1999

Sample Date	Observation	Ln
Mar 31 1996	0.300 ppb	-1.204
Jun 30 1996	0.100 ppb	-2.303 (* Nondetect *)
Sep 30 1996	2.400 ppb	0.875
Dec 31 1996	0.900 ppb	-0.105
Mar 31 1997	1.000 ppb	0.000
Jun 30 1997	0.100 ppb	-2.303 (* Nondetect *)
Sep 30 1997	0.100 ppb	-2.303 (* Nondetect *)
Dec 31 1997	0.100 ppb	-2.303 (* Nondetect *)
Mar 09 1998	0.100 ppb	-2.303 (* Nondetect *)
May 14 1998	0.100 ppb	-2.303 (* Nondetect *)
Aug 14 1998	0.100 ppb	-2.303 (* Nondetect *)
Nov 23 1998	0.100 ppb	-2.303 (* Nondetect *)
Mar 13 1999	0.100 ppb	-2.303 (* Nondetect *)
May 27 1999	0.100 ppb	-2.303 (* Nondetect *)
Jul 27 1999	0.100 ppb	-2.303 (* Nondetect *)
Nov 08 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 10 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 11 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 12 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 13 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 14 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 15 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 16 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 17 1999	0.100 ppb	-2.303 (* Nondetect *)
		•

Dec 20 1999 2.000 ppb 0.693 (* Nond Dec 21 1999 2.000 ppb 0.693 (* Nond Dec 22 1999 2.000 ppb 0.693 (* Nond Dec 23 1999 2.000 ppb 0.693 (* Nond Dec 24 1999 2.000 ppb 0.693 (* Nond Dec 25 1999 2.000 ppb 0.693 (* Nond Dec 26 1999 2.000 ppb 0.693 (* Nond Dec 27 1999 2.000 ppb 0.693 (* Nond Dec 28 1999 2.000 ppb 0.693 (* Nond Dec 29 1999 2.000 ppb 0.693 (* Nond Dec 30 1999 2.000 ppb 0.693 (* Nond Dec 30 1999 2.000 ppb 0.693 (* Nond Dec 30 1999 2.000 ppb 0.693 (* Nond	letect *)
---	---

Well ID:13MW1 Summary Statistics

Observations (N): 37 Nondetects (%ND): 89

 Minimum:
 0.100 ppb
 Ln Minimum:
 -2.303

 Maximum:
 2.400 ppb
 Ln Maximum:
 0.875

 Mean:
 0.881 ppb
 Ln Mean:
 -1.013

 Std. Dev.:
 0.930 ppb
 Ln Std. Dev.:
 1.458

Sample Date	Observation	Ln
Mar 31 1996	0.100 ppb	-2.303 (* Nondetect *)
Jun 30 1996	0.100 ppb	-2.303 (* Nondetect *)
Sep 30 1996	0.400 ppb	-0.916
Dec 31 1996	0.700 ppb	-0.357
Mar 31 1997	0.100 ppb	-2.303 (* Nondetect *)
Jun 30 1997	0.100 ppb	-2.303 (* Nondetect *)
Sep 30 1997	0.100 ppb	-2.303 (* Nondetect *)
Dec 31 1997	0.100 ppb	-2.303 (* Nondetect *)
Mar 09 1998	0.100 ppb	-2.303 (* Nondetect *)
May 14 1998	0.100 ppb	-2.303 (* Nondetect *)
Aug 14 1998	0.100 ppb	-2.303 (* Nondetect *)
Nov 23 1998	0.100 ppb	-2.303 (* Nondetect *)
Mar 13 1999	0.100 ppb	-2.303 (* Nondetect *)
May 27 1999		-2.303 (* Nondetect *)
Jul 27 1999	0.100 ppb	-2.303 (* Nondetect *)
Nov 08 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 10 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 11 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 12 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 13 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 14 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 15 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 16 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 17 1999	0.100 ppb	-2.303 (* Nondetect *)
Dec 18 1999	2.000 ppb	0.693 (* Nondetect *)
Dec 19 1999	2.000 ppb	0.693 (* Nondetect *)
Dec 20 1999	2.000 ppb	0.693 (* Nondetect *)
Dec 21 1999	2.000 ppb	0.693 (* Nondetect *)
Dec 22 1999	2.000 ppb	0.693 (* Nondetect *)

Dec 23 1999	2.000 ppb	0.693 (* Nondetect *)
Dec 24 1999	2.000 ppb	0.693 (* Nondetect *)
Dec 25 1999	2.000 ppb	0.693 (* Nondetect *)
Dec 26 1999	2.000 ppb	0.693 (* Nondetect *)
Dec 27 1999	2.000 ppb	0.693 (* Nondetect *)
Dec 28 1999	2.000 ppb	0.693 (* Nondetect *)
Dec 29 1999	2.000 ppb	0.693 (* Nondetect *)
Dec 30 1999	2.000 ppb	0.693 (* Nondetect *)

Well ID:13MW2 Summary Statistics

Observations (N): 37 Nondetects (%ND): 95

 Minimum:
 0.100 ppb
 Ln Minimum:
 -2.303

 Maximum:
 2.000 ppb
 Ln Maximum:
 0.693

 Mean:
 0.792 ppb
 Ln Mean:
 -1.160

 Std. Dev.:
 0.908 ppb
 Ln Std. Dev.:
 1.434

Normality Tests

Report Printed: 05-10-2005 16:37

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:VA Zip:

County: PULASKI

Contact:

Phone:() -

Permit Type: Detection

Constituent: Ag Silver, total

CAS Number: 7440-22-4

MCL: 0.000 ppb

ACL: 0.000 ppb

Detect Limit: 4.000 ppb

Start Date:Mar 31 1996 End Date:Dec 30 1999

Normality Test on Observations for wells listed below:

Well:13MW1 Position:Upgradient Observations:37

Scale Minimum Maximum Mean Std Dev Original: 0.100 2.400 0.881 0.930

Log: -2.303 0.875 -1.013 1.458

Well:13MW2 Position:Upgradient Observations:37

Scale Minimum Maximum Mean Std Dev

Original: 0.100 2.000 0.792 0.908 Log: -2.303 0.693 -1.160 1.434

Pooled Statistics

Observations: 74

Statistic Original Log Scale Scale Mean: 0.836 -1.086Std Dev: 0.914 1.438 Skewness: 0.502 0.376 **Kurtosis:** -1.683 -1.799Minimum: -2.3030.100Maximum: 2.400 0.875 CV: 1.092 -1.324

Shapiro-Francia Statistics

Test 5% Critical 1% Critical Scale Statistic Value Value Original: 0.6793* Log: 0.6842* 0.9690 0.9560 0.9690 0.9560

^{*} Indicates statistically significant evidence of non-normality. GRIT/STAT Version 5.0

Nonparametric Prediction Interval Report Printed May 10,2005

Facility:Haz. Waste Unit 13 - RAAP Parameter:Silver, total(CAS Number:7440-22-4)

ONE-TAILED UPPER PARAMETRIC PREDICTION INTERVAL

Observations (n):

Conf. Level $(1-\alpha)$:

*** ***%

UL: 2:4-ppb

LL: 0.000

YND: 92%.

Page 1

Data Set Summary

Report Printed: 05-10-2005 16:44

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:VA Zip: County:PULASKI

Contact:
Phone:() -

Permit Type: Detection

Constituent: Acetone Acetone

CAS Number: 67-64-1

MCL: 0.000 ppb ACL: 0.000 ppb

Detect Limit: 50.000 ppb

Start Date:Mar 31 1996 End Date:Dec 30 1999

Sample Date	Observation	Ln
Mar 31 1996	5.000 ppb	1.609 (* Nondetect *)
Jun 30 1996	5.000 ppb	1.609 (* Nondetect *)
Sep 30 1996	5.000 ppb	1.609 (* Nondetect *)
Dec 31 1996	5.000 ppb	1.609 (* Nondetect *)
Mar 31 1997	5.000 ppb	1.609 (* Nondetect *)
Jun 30 1997	5.000 ppb	1.609 (* Nondetect *)
Sep 30 1997	5.000 ppb	1.609 (* Nondetect *)
Dec 31 1997	5.000 ppb	1.609 (* Nondetect *)
Mar 09 1998	5.000 ppb	1.609 (* Nondetect *)
May 14 1998	5.000 ppb	1.609 (* Nondetect *)
Aug 14 1998	5.000 ppb	1.609 (* Nondetect *)
Nov 23 1998	5.000 ppb	1.609 (* Nondetect *)
Mar 13 1999	5.000 ppb	1.609 (* Nondetect *)
May 27 1999	5.000 ppb	1.609 (* Nondetect *)
Jul 27 1999	5.000 ppb	1.609 (* Nondetect *)
Nov 08 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 10 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 11 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 12 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 13 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 14 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 15 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 16 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 17 1999	5.000 ppb	1.609 (* Nondetect *)

Dec 18 1999 Dec 19 1999 Dec 20 1999 Dec 21 1999 Dec 22 1999 Dec 23 1999 Dec 24 1999 Dec 25 1999 Dec 26 1999 Dec 27 1999 Dec 28 1999 Dec 29 1999	25.000 ppb 25.000 ppb	3.219 (* Nondetect *)
Dec 29 1999 Dec 30 1999	25.000 ppb 25.000 ppb	3.219 (* Nondetect *) 3.219 (* Nondetect *)

Well ID:13MW1 Summary Statistics

Observations (N): 37 Nondetects (%ND):100

 Minimum:
 5.000 ppb
 Ln Minimum:
 1.609

 Maximum:
 25.000 ppb
 Ln Maximum:
 3.219

 Mean:
 12.027 ppb
 Ln Mean:
 2.175

 Std. Dev.:
 9.680 ppb
 Ln Std. Dev.:
 0.779

Sample Date	Observation	Ln
Mar 31 1996	5.000 ppb	1.609 (* Nondetect *)
Jun 30 1996	5.000 ppb	1.609 (* Nondetect *)
Sep 30 1996	5.000 ppb	1.609 (* Nondetect *)
Dec 31 1996	5.000 ppb	1.609 (* Nondetect *)
Mar 31 1997	5.000 ppb	1.609 (* Nondetect *)
Jun 30 1997	5.000 ppb	1.609 (* Nondetect *)
Sep 30 1997	5.000 ppb	1.609 (* Nondetect *)
Dec 31 1997	5.000 ppb	1.609 (* Nondetect *)
Mar 09 1998	5.000 ppb	1.609 (* Nondetect *)
May 14 1998	5.000 ppb	1.609 (* Nondetect *)
Aug 14 1998	5.000 ppb	1.609 (* Nondetect *)
Nov 23 1998	5.000 ppb	1.609 (* Nondetect *)
Mar 13 1999	5.000 ppb	1.609 (* Nondetect *)
May 27 1999	5.000 ppb	1.609 (* Nondetect *)
Jul 27 1999	5.000 ppb	1.609 (* Nondetect *)
Nov 08 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 10 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 11 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 12 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 13 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 14 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 15 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 16 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 17 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 18 1999	25.000 ppb	3.219 (* Nondetect *)
Dec 19 1999	25.000 ppb	3.219 (* Nondetect *)
Dec 20 1999	25.000 ppb	3.219 (* Nondetect *)
Dec 21 1999	25.000 ppb	3.219 (* Nondetect *)
Dec 22 1999	25.000 ppb	3.219 (* Nondetect *)

25.000 ppb	3.219 (* Nondetect *)
	3.219 (* Nondetect *)
25.000 ppb	3.219 (* Nondetect *)
25.000 ppb	3.219 (* Nondetect *)
25.000 ppb	3.219 (* Nondetect *)
25.000 ppb	3.219 (* Nondetect *)
25.000 ppb	3.219 (* Nondetect *)
25.000 ppb	3.219 (* Nondetect *)
	25.000 ppb 25.000 ppb 25.000 ppb 25.000 ppb

Well ID:13MW2 Summary Statistics

Observations (N): 37 Nondetects (%ND):100

 Minimum:
 5.000 ppb
 Ln Minimum:
 1.609

 Maximum:
 25.000 ppb
 Ln Maximum:
 3.219

 Mean:
 12.027 ppb
 Ln Mean:
 2.175

 Std. Dev.:
 9.680 ppb
 Ln Std. Dev.:
 0.779

Data Set Summary

Report Printed: 05-10-2005 16:43

Facility:RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford County:PULASKI ST:VA Zip:

Contact: Phone:() -

Permit Type:Detection

Constituent:Benzene Benzene

CAS Number: 71-43-2

MCL: ACL:

0.000 ppb 0.000 ppb 10.000 ppb Detect Limit:

Start Date:Mar 31 1996 End Date:Dec 30 1999

Sample Date	Observation	Ln
Mar 31 1996	0.050 ppb	-2.996 (* Nondetect *)
Jun 30 1996	0.050 ppb	-2.996 (* Nondetect *)
Sep 30 1996	0.050 ppb	-2.996 (* Nondetect *)
Dec 31 1996	0.050 ppb	-2.996 (* Nondetect *)
Mar 31 1997	0.050 ppb	-2.996 (* Nondetect *)
Jun 30 1997	0.050 ppb	-2.996 (* Nondetect *)
Sep 30 1997	0.050 ppb	-2.996 (* Nondetect *)
Dec 31 1997	0.050 ppb	-2.996 (* Nondetect *)
Mar 09 1998	0.050 ppb	-2.996 (* Nondetect *)
May 14 1998	0.050 ppb	-2.996 (* Nondetect *)
Aug 14 1998	0.050 ppb	-2.996 (* Nondetect *)
Nov 23 1998	0.050 ppb	-2.996 (* Nondetect *)
Mar 13 1999	0.050 ppb	-2.996 (* Nondetect *)
May 27 1999	0.050 ppb	-2.996 (* Nondetect *)
Jul 27 1999	0.050 ppb	-2.996 (* Nondetect *)
Nov 08 1999	$0.050 \mathrm{ppb}$	-2.996 (* Nondetect *)
Dec 10 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 11 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 12 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 13 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 14 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 15 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 16 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 17 1999	0.050 ppb	-2.996 (* Nondetect *)

Dec 18 1999 Dec 19 1999 Dec 20 1999 Dec 21 1999 Dec 22 1999 Dec 23 1999 Dec 24 1999 Dec 25 1999 Dec 26 1999 Dec 27 1999 Dec 28 1999 Dec 29 1999	5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb 5.000 ppb	1.609 (* Nondetect *)
Dec 28 1999 Dec 29 1999 Dec 30 1999	5.000 ppb 5.000 ppb 5.000 ppb	1.609 (* Nondetect *) 1.609 (* Nondetect *) 1.609 (* Nondetect *)

Observations (N): 37 Nondetects (%ND):100

 Minimum:
 0.050 ppb
 Ln Minimum:
 -2.996

 Maximum:
 5.000 ppb
 Ln Maximum:
 1.609

 Mean:
 1.789 ppb
 Ln Mean:
 -1.378

 Std. Dev.:
 2.396 ppb
 Ln Std. Dev.:
 2.229

Sample Date	Observation	Ln
Mar 31 1996	0.050 ppb	-2.996 (* Nondetect *)
Jun 30 1996	0.050 ppb	-2.996 (* Nondetect *)
Sep 30 1996	0.050 ppb	-2.996 (* Nondetect *)
Dec 31 1996	0.050 ppb	-2.996 (* Nondetect *)
Mar 31 1997	0.050 ppb	-2.996 (* Nondetect *)
Jun 30 1997	0.050 ppb	-2.996 (* Nondetect *)
Sep 30 1997	0.050 ppb	-2.996 (* Nondetect *)
Dec 31 1997	0.050 ppb	-2.996 (* Nondetect *)
Mar 09 1998	0.050 ppb	-2.996 (* Nondetect *)
May 14 1998	0.050 ppb	-2.996 (* Nondetect *)
Aug 14 1998	0.050 ppb	-2.996 (* Nondetect *)
Nov 23 1998	0.050 ppb	-2.996 (* Nondetect *)
Mar 13 1999	0.050 ppb	-2.996 (* Nondetect *)
May 27 1999		-2.996 (* Nondetect *)
Jul 27 1999	0.050 ppb	-2.996 (* Nondetect *)
Nov 08 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 10 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 11 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 12 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 13 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 14 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 15 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 16 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 17 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 18 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 19 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 20 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 21 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 22 1999	5.000 ppb	1.609 (* Nondetect *)

Dec 23 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 24 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 25 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 26 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 27 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 28 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 29 1999	5.000 ppb	
	**	

Report Printed: 05-10-2005 16:46

Facility:RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:VA Zip: County:PULASKI

Contact:

Phone:() -

Permit Type: Detection

Constituent: Toluene Toluene

CAS Number: 108-88-3

MCL: 0.000 ppb ACL: 0.000 ppb

Detect Limit: 10.000 ppb

Start Date:Mar 31 1996 End Date:Dec 30 1999

Sample Date	Observation	Ln
Mar 31 1996	0.050 ppb	-2.996 (* Nondetect *)
Jun 30 1996	0.200 ppb	-1.609
Sep 30 1996	0.050 ppb	-2.996 (* Nondetect *)
Dec 31 1996	0.050 ppb	-2.996 (* Nondetect *)
Mar 31 1997	0.050 ppb	-2.996 (* Nondetect *)
Jun 30 1997	0.050 ppb	-2.996 (* Nondetect *)
Sep 30 1997	0.050 ppb	-2.996 (* Nondetect *)
Dec 31 1997	0.050 ppb	-2.996 (* Nondetect *)
Mar 09 1998	0.050 ppb	-2.996 (* Nondetect *)
May 14 1998	0.050 ppb	-2.996 (* Nondetect *)
Aug 14 1998	0.050 ppb	-2.996 (* Nondetect *)
Nov 23 1998	0.050 ppb	-2.996 (* Nondetect *)
Mar 13 1999	0.050 ppb	-2.996 (* Nondetect *)
May 27 1999	0.050 ppb	-2.996 (* Nondetect *)
Jul 27 1999	0.050 ppb	-2.996 (* Nondetect *)
Nov 08 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 10 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 11 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 12 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 13 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 14 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 15 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 16 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 17 1999	0.050 ppb	-2.996 (* Nondetect *)
	- ^	,

Observations (N): 37 Nondetects (%ND): 97

 Minimum:
 0.050 ppb
 Ln Minimum:
 -2.996

 Maximum:
 5.000 ppb
 Ln Maximum:
 1.609

 Mean:
 1.793 ppb
 Ln Mean:
 -1.340

 Std. Dev.:
 2.393 ppb
 Ln Std. Dev.:
 2.212

Sample Date	Observation	Ι.,.
Mar 31 1996	0.050 ppb	Ln 2 006 (* Nondatagt *)
Jun 30 1996	0.200 ppb	-2.996 (* Nondetect *) -1.609
Sep 30 1996	0.250 ppb 0.050 ppb	-2.996 (* Nondetect *)
Dec 31 1996	0.050 ppb	-2.996 (* Nondetect *)
Mar 31 1997	0.050 ppb	-2.996 (* Nondetect *)
Jun 30 1997	0.050 ppb	-2.996 (* Nondetect *)
Sep 30 1997	0.050 ppb	-2.996 (* Nondetect *)
Dec 31 1997	0.050 ppb	-2.996 (* Nondetect *)
Mar 09 1998	0.050 ppb	-2.996 (* Nondetect *)
May 14 1998	0.050 ppb	-2.996 (* Nondetect *)
Aug 14 1998	0.050 ppb	-2.996 (* Nondetect *)
Nov 23 1998	0.050 ppb	-2.996 (* Nondetect *)
Mar 13 1999	0.050 ppb	-2.996 (* Nondetect *)
May 27 1999	0.050 ppb	-2.996 (* Nondetect *)
Jul 27 1999	0.050 ppb	-2.996 (* Nondetect *)
Nov 08 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 10 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 11 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 12 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 13 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 14 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 15 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 16 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 17 1999	0.050 ppb	-2.996 (* Nondetect *)
Dec 18 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 19 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 20 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 21 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 22 1999	5.000 ppb	1.609 (* Nondetect *)

Dec 23 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 24 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 25 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 26 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 27 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 28 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 29 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 30 1999	5.000 ppb	1.609 (* Nondetect *)

Observations (N): 37 Nondetects (%ND): 97

 Minimum:
 0.050 ppb
 Ln Minimum:
 -2.996

 Maximum:
 5.000 ppb
 Ln Maximum:
 1.609

 Mean:
 1.793 ppb
 Ln Mean:
 -1.340

 Std. Dev.:
 2.393 ppb
 Ln Std. Dev.:
 2.212

Report Printed: 05-10-2005 16:46

Facility:RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:VA Zip: County:PULASKI

Contact:
Phone:() -

Permit Type:Detection

Constituent:2,4-DNT 2,4-Dinitrotoluene

Start Date:Mar 31 1996 End Date:Dec 30 1999

Sample Date	Observation	Ln
Mar 31 1996	0.040 ppb	-3.219 (* Nondetect *)
Jun 30 1996	0.040 ppb	-3.219 (* Nondetect *)
Sep 30 1996	0.040 ppb	-3.219 (* Nondetect *)
Dec 31 1996	0.040 ppb	-3.219 (* Nondetect *)
Mar 31 1997	0.040 ppb	-3.219 (* Nondetect *)
Jun 30 1997	0.040 ppb	-3.219 (* Nondetect *)
Sep 30 1997	0.040 ppb	-3.219 (* Nondetect *)
Dec 31 1997	0.040 ppb	-3.219 (* Nondetect *)
Mar 09 1998	0.040 ppb	-3.219 (* Nondetect *)
May 14 1998	0.040 ppb	-3.219 (* Nondetect *)
Aug 14 1998	0.040 ppb	-3.219 (* Nondetect *)
Nov 23 1998	0.040 ppb	-3.219 (* Nondetect *)
Mar 13 1999	0.040 ppb	-3.219 (* Nondetect *)
May 27 1999	0.040 ppb	-3.219 (* Nondetect *)
Jul 27 1999	0.040 ppb	-3.219 (* Nondetect *)
Nov 08 1999	$0.040 \mathrm{ppb}$	-3.219 (* Nondetect *)
Dec 10 1999	0.040 ppb	-3.219 (* Nondetect *)
Dec 11 1999	0.040 ppb	-3.219 (* Nondetect *)
Dec 12 1999	0.040 ppb	-3.219 (* Nondetect *)
Dec 13 1999	0.040 ppb	-3.219 (* Nondetect *)
Dec 14 1999	0.040 ppb	-3.219 (* Nondetect *)
Dec 15 1999	0.040 ppb	-3.219 (* Nondetect *)
Dec 16 1999	0.040 ppb	-3.219 (* Nondetect *)
Dec 17 1999	0.040 ppb	-3.219 (* Nondetect *)

Observations (N): 37 Nondetects (%ND):100

 Minimum:
 0.040 ppb
 Ln Minimum:
 -3.219

 Maximum:
 10.000 ppb
 Ln Maximum:
 2.303

 Mean:
 3.539 ppb
 Ln Mean:
 -1.279

 Std. Dev.:
 4.820 ppb
 Ln Std. Dev.:
 2.672

Sample Date	Observation	Ln
Mar 31 1996	0.040 ppb	-3.219 (* Nondetect *)
Jun 30 1996	0.040 ppb	-3.219 (* Nondetect *)
Sep 30 1996	0.040 ppb	-3.219 (* Nondetect *)
Dec 31 1996	0.040 ppb	-3.219 (* Nondetect *)
Mar 31 1997	0.040 ppb	-3.219 (* Nondetect *)
Jun 30 1997	0.040 ppb	-3.219 (* Nondetect *)
Sep 30 1997	0.040 ppb	-3.219 (* Nondetect *)
Dec 31 1997	0.040 ppb	-3.219 (* Nondetect *)
Mar 09 1998	0.040 ppb	-3.219 (* Nondetect *)
May 14 1998	0.040 ppb	-3.219 (* Nondetect *)
Aug 14 1998	0.040 ppb	-3.219 (* Nondetect *)
Nov 23 1998	0.040 ppb	-3.219 (* Nondetect *)
Mar 13 1999	0.040 ppb	-3.219 (* Nondetect *)
May 27 1999	1.1	-3.219 (* Nondetect *)
Jul 27 1999	0.040 ppb	-3.219 (* Nondetect *)
Nov 08 1999	0.040 ppb	-3.219 (* Nondetect *)
Dec 10 1999	0.040 ppb	-3.219 (* Nondetect *)
Dec 11 1999	0.040 ppb	-3.219 (* Nondetect *)
Dec 12 1999	0.040 ppb	-3.219 (* Nondetect *)
Dec 13 1999	0.040 ppb	-3.219 (* Nondetect *)
Dec 14 1999	0.040 ppb	-3.219 (* Nondetect *)
Dec 15 1999	0.040 ppb	-3.219 (* Nondetect *)
Dec 16 1999	0.040 ppb	-3.219 (* Nondetect *)
Dec 17 1999	0.040 ppb	-3.219 (* Nondetect *)
Dec 18 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 19 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 20 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 21 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 22 1999	10.000 ppb	2.303 (* Nondetect *)

10.000 ppb	2.303 (* Nondetect *)
10.000 ppb	2.303 (* Nondetect *)
10.000 ppb	2.303 (* Nondetect *)
10.000 ppb	2.303 (* Nondetect *)
10.000 ppb	2.303 (* Nondetect *)
10.000 ppb	2.303 (* Nondetect *)
10.000 ppb	2.303 (* Nondetect *)
10.000 ppb	2.303 (* Nondetect *)
	10.000 ppb 10.000 ppb 10.000 ppb 10.000 ppb 10.000 ppb

Observations (N): 37 Nondetects (%ND):100

 Minimum:
 0.040 ppb
 Ln Minimum:
 -3.219

 Maximum:
 10.000 ppb
 Ln Maximum:
 2.303

 Mean:
 3.539 ppb
 Ln Mean:
 -1.279

 Std. Dev.:
 4.820 ppb
 Ln Std. Dev.:
 2.672

Report Printed: 05-10-2005 16:47

Facility:RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford County:PULASKI ST:VA Zip:

Contact:

Phone:() -

Permit Type: Detection

Constituent: Di-N-Bu Di-n-Butylphthalate

CAS Number: 84-74-2

MCL:

ACL:

0.000 ppb 0.000 ppb 20.000 ppb Detect Limit:

Start Date:Mar 31 1996 End Date:Dec 30 1999

Sample Date	Observation	Ln
Mar 31 1996	2.500 ppb	0.916 (* Nondetect *)
Jun 30 1996	2.500 ppb	0.916 (* Nondetect *)
Sep 30 1996	2.500 ppb	0.916 (* Nondetect *)
Dec 31 1996	2.500 ppb	0.916 (* Nondetect *)
Mar 31 1997	2.500 ppb	0.916 (* Nondetect *)
Jun 30 1997	2.500 ppb	0.916 (* Nondetect *)
Sep 30 1997	2.500 ppb	0.916 (* Nondetect *)
Dec 31 1997	2.500 ppb	0.916 (* Nondetect *)
Mar 09 1998	2.500 ppb	0.916 (* Nondetect *)
May 14 1998	2.500 ppb	0.916 (* Nondetect *)
Aug 14 1998	2.500 ppb	0.916 (* Nondetect *)
Nov 23 1998	2.500 ppb	0.916 (* Nondetect *)
Mar 13 1999	2.500 ppb	0.916 (* Nondetect *)
May 27 1999	2.500 ppb	0.916 (* Nondetect *)
Jul 27 1999	2.500 ppb	0.916 (* Nondetect *)
Nov 08 1999	$2.500 \mathrm{ppb}$	0.916 (* Nondetect *)
Dec 10 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 11 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 12 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 13 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 14 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 15 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 16 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 17 1999	2.500 ppb	0.916 (* Nondetect *)

Observations (N): 37 Nondetects (%ND):100

 Minimum:
 2.500 ppb
 Ln Minimum:
 0.916

 Maximum:
 10.000 ppb
 Ln Maximum:
 2.303

 Mean:
 5.135 ppb
 Ln Mean:
 1.403

 Std. Dev.:
 3.630 ppb
 Ln Std. Dev.:
 0.671

Sample Date	Observation	Ln
Mar 31 1996	2.500 ppb	0.916 (* Nondetect *)
Jun 30 1996	2.500 ppb	0.916 (* Nondetect *)
Sep 30 1996	2.500 ppb 2.500 ppb	0.916 (* Nondetect *)
Dec 31 1996	2.500 ppb	0.916 (* Nondetect *)
Mar 31 1997	2.500 ppb 2.500 ppb	
Jun 30 1997		0.916 (* Nondetect *)
Sep 30 1997	2.500 ppb	0.916 (* Nondetect *)
Dec 31 1997	2.500 ppb	0.916 (* Nondetect *)
Mar 09 1998	2.500 ppb	0.916 (* Nondetect *)
	2.500 ppb	0.916 (* Nondetect *)
May 14 1998 Aug 14 1998		0.916 (* Nondetect *)
Nov 23 1998	2.500 ppb	0.916 (* Nondetect *)
Mar 13 1999	2.500 ppb	0.916 (* Nondetect *)
May 27 1999	2.500 ppb	0.916 (* Nondetect *)
Jul 27 1999		0.916 (* Nondetect *)
Nov 08 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 10 1999	2.500 ppb	0.916 (* Nondetect *)
	2.500 ppb	0.916 (* Nondetect *)
Dec 11 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 12 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 13 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 14 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 15 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 16 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 17 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 18 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 19 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 20 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 21 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 22 1999	10.000 ppb	2.303 (* Nondetect *)

Dec 23 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 24 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 25 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 26 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 27 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 28 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 29 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 30 1999	10.000 ppb	2.303 (* Nondetect *)

Observations (N): 37 Nondetects (%ND):100

 Minimum:
 2.500 ppb
 Ln Minimum:
 0.916

 Maximum:
 10.000 ppb
 Ln Maximum:
 2.303

 Mean:
 5.135 ppb
 Ln Mean:
 1.403

 Std. Dev.:
 3.630 ppb
 Ln Std. Dev.:
 0.671

Report Printed: 05-10-2005 16:47

Facility:RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:VA Zip: County:PULASKI

Phone:() -

Permit Type: Detection

Constituent: DEthPhth Diethylphthalate

CAS Number: 84-66-2 MCL: 0.000 ppb ACL: 0.000 ppb

ACL: 0.000 ppb Detect Limit: 20.000 ppb

Start Date:Mar 31 1996 End Date:Dec 30 1999

Sample Date	Observation	Ln
Mar 31 1996	2.500 ppb	0.916 (* Nondetect *)
Jun 30 1996	2.500 ppb	0.916 (* Nondetect *)
Sep 30 1996	2.500 ppb	0.916 (* Nondetect *)
Dec 31 1996	2.500 ppb	0.916 (* Nondetect *)
Mar 31 1997	2.500 ppb	0.916 (* Nondetect *)
Jun 30 1997	2.500 ppb	0.916 (* Nondetect *)
Sep 30 1997	2.500 ppb	0.916 (* Nondetect *)
Dec 31 1997	2.500 ppb	0.916 (* Nondetect *)
Mar 09 1998	2.500 ppb	0.916 (* Nondetect *)
May 14 1998	2.500 ppb	0.916 (* Nondetect *)
Aug 14 1998	2.500 ppb	0.916 (* Nondetect *)
Nov 23 1998	2.500 ppb	0.916 (* Nondetect *)
Mar 13 1999	2.500 ppb	0.916 (* Nondetect *)
May 27 1999		0.916 (* Nondetect *)
Jul 27 1999	2.500 ppb	0.916 (* Nondetect *)
Nov 08 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 10 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 11 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 12 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 13 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 14 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 15 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 16 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 17 1999	2.500 ppb	0.916 (* Nondetect *)

Observations (N): 37 Nondetects (%ND):100

 Minimum:
 2.500 ppb
 Ln Minimum:
 0.916

 Maximum:
 10.000 ppb
 Ln Maximum:
 2.303

 Mean:
 5.135 ppb
 Ln Mean:
 1.403

 Std. Dev.:
 3.630 ppb
 Ln Std. Dev.:
 0.671

Sample Date	Observation	Ln
Mar 31 1996	2.500 ppb	0.916 (* Nondetect *)
Jun 30 1996	2.500 ppb	0.916 (* Nondetect *)
Sep 30 1996	2.500 ppb	0.916 (* Nondetect *)
Dec 31 1996	2.500 ppb	0.916 (* Nondetect *)
Mar 31 1997	2.500 ppb	0.916 (* Nondetect *)
Jun 30 1997	2.500 ppb	0.916 (* Nondetect *)
Sep 30 1997	2.500 ppb	0.916 (* Nondetect *)
Dec 31 1997	2.500 ppb	0.916 (* Nondetect *)
Mar 09 1998	2.500 ppb	0.916 (* Nondetect *)
May 14 1998	2.500 ppb	0.916 (* Nondetect *)
Aug 14 1998	2.500 ppb	0.916 (* Nondetect *)
Nov 23 1998	2.500 ppb	0.916 (* Nondetect *)
Mar 13 1999	2.500 ppb	0.916 (* Nondetect *)
May 27 1999	2.500 ppb	0.916 (* Nondetect *)
Jul 27 1999	2.500 ppb	0.916 (* Nondetect *)
Nov 08 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 10 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 11 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 12 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 13 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 14 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 15 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 16 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 17 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 18 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 19 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 20 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 21 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 22 1999	10.000 ppb	2.303 (* Nondetect *)

10.000 ppb	2.303 (* Nondetect *)
10.000 ppb	2.303 (* Nondetect *)
10.000 ppb	2.303 (* Nondetect *)
10.000 ppb	2.303 (* Nondetect *)
10.000 ppb	2.303 (* Nondetect *)
10.000 ppb	2.303 (* Nondetect *)
10.000 ppb	2.303 (* Nondetect *)
10.000 ppb	2.303 (* Nondetect *)
	10.000 ppb 10.000 ppb 10.000 ppb 10.000 ppb 10.000 ppb

Observations (N): 37 Nondetects (%ND):100

 Minimum:
 2.500 ppb
 Ln Minimum:
 0.916

 Maximum:
 10.000 ppb
 Ln Maximum:
 2.303

 Mean:
 5.135 ppb
 Ln Mean:
 1.403

 Std. Dev.:
 3.630 ppb
 Ln Std. Dev.:
 0.671

Report Printed: 05-10-2005 16:47

Facility:RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford County:PULASKI ST:VA Zip:

Contact: Phone:() -

Permit Type: Detection

Diphenylamine Constituent:DPA

Detect Limit:

Start Date:Mar 31 1996 End Date:Dec 30 1999

Sample Date	Observation	Ln
Mar 31 1996	5.000 ppb	1.609 (* Nondetect *)
Jun 30 1996	5.000 ppb	1.609 (* Nondetect *)
Sep 30 1996	5.000 ppb	1.609 (* Nondetect *)
Dec 31 1996	5.000 ppb	1.609 (* Nondetect *)
Mar 31 1997	5.000 ppb	1.609 (* Nondetect *)
Jun 30 1997	5.000 ppb	1.609 (* Nondetect *)
Sep 30 1997	5.000 ppb	1.609 (* Nondetect *)
Dec 31 1997	5.000 ppb	1.609 (* Nondetect *)
Mar 09 1998	5.000 ppb	1.609 (* Nondetect *)
May 14 1998	5.000 ppb	1.609 (* Nondetect *)
Aug 14 1998	5.000 ppb	1.609 (* Nondetect *)
Nov 23 1998	5.000 ppb	1.609 (* Nondetect *)
Mar 13 1999	5.000 ppb	1.609 (* Nondetect *)
May 27 1999	5.000 ppb	1.609 (* Nondetect *)
Jul 27 1999	5.000 ppb	1.609 (* Nondetect *)
Nov 08 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 10 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 11 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 12 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 13 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 14 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 15 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 16 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 17 1999	5.000 ppb	1.609 (* Nondetect *)

Observations (N): 37 Nondetects (%ND):100

 Minimum:
 5.000 ppb
 Ln Minimum:
 1.609

 Maximum:
 10.000 ppb
 Ln Maximum:
 2.303

 Mean:
 6.757 ppb
 Ln Mean:
 1.853

 Std. Dev.:
 2.420 ppb
 Ln Std. Dev.:
 0.335

Sample Date	Observation	Ln
Mar 31 1996	5.000 ppb	1.609 (* Nondetect *)
Jun 30 1996	5.000 ppb	1.609 (* Nondetect *)
Sep 30 1996	5.000 ppb	1.609 (* Nondetect *)
Dec 31 1996	5.000 ppb	1.609 (* Nondetect *)
Mar 31 1997	5.000 ppb	1.609 (* Nondetect *)
Jun 30 1997	5.000 ppb	1.609 (* Nondetect *)
Sep 30 1997	5.000 ppb	1.609 (* Nondetect *)
Dec 31 1997	5.000 ppb	1.609 (* Nondetect *)
Mar 09 1998	5.000 ppb	1.609 (* Nondetect *)
May 14 1998		1.609 (* Nondetect *)
Aug 14 1998	5.000 ppb	1.609 (* Nondetect *)
Nov 23 1998	5.000 ppb	1.609 (* Nondetect *)
Mar 13 1999	5.000 ppb	1.609 (* Nondetect *)
May 27 1999	11	1.609 (* Nondetect *)
Jul 27 1999	5.000 ppb	1.609 (* Nondetect *)
Nov 08 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 10 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 11 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 12 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 13 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 14 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 15 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 16 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 17 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 18 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 19 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 20 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 21 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 22 1999	10.000 ppb	2.303 (* Nondetect *)

Dec 23 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 24 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 25 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 26 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 27 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 28 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 29 1999	10.000 ppb	2.303 (* Nondetect *)
Dec 30 1999	10.000 ppb	2.303 (* Nondetect *)

Observations (N): 37 Nondetects (%ND):100

 Minimum:
 5.000 ppb
 Ln Minimum:
 1.609

 Maximum:
 10.000 ppb
 Ln Maximum:
 2.303

 Mean:
 6.757 ppb
 Ln Mean:
 1.853

 Std. Dev.:
 2.420 ppb
 Ln Std. Dev.:
 0.335

Report Printed: 05-10-2005 16:48

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:VA Zip: County:PULASKI

Contact:
Phone:() -

Permit Type: Detection

Constituent: NGlycern Nitroglycerin or 1, 2, 3-Propanetriol, trinitrate

CAS Number: 55-63-0 MCL: 0.000 mg/l

ACL: 0.000 mg/l
Detect Limit: 20.000 mg/l

Start Date:Mar 31 1996 End Date:Dec 30 1999

Sample Date	Observation	Ln
Mar 31 1996	0.005 mg/l	-5.298 (* Nondetect *)
Jun 30 1996	0.005 mg/l	-5.298 (* Nondetect *)
Sep 30 1996	0.005 mg/l	-5.298 (* Nondetect *)
Dec 31 1996	0.005 mg/l	-5.298 (* Nondetect *)
Mar 31 1997	0.005 mg/l	-5.298 (* Nondetect *)
Jun 30 1997	0.005 mg/l	-5.298 (* Nondetect *)
Sep 30 1997	0.005 mg/l	-5.298 (* Nondetect *)
Dec 31 1997	0.005 mg/l	-5.298 (* Nondetect *)
Mar 09 1998	0.005 mg/l	-5.298 (* Nondetect *)
May 14 1998	0.005 mg/1	-5.298 (* Nondetect *)
Aug 14 1998	0.005 mg/l	-5.298 (* Nondetect *)
Nov 23 1998	0.005 mg/l	-5.298 (* Nondetect *)
Mar 13 1999	0.005 mg/l	-5.298 (* Nondetect *)
May 27 1999		-5.298 (* Nondetect *)
Jul 27 1999	0.005 mg/l	-5.298 (* Nondetect *)
Nov 08 1999	0.005 mg/l	-5.298 (* Nondetect *)
Dec 10 1999	0.005 mg/l	-5.298 (* Nondetect *)
Dec 11 1999	0.005 mg/l	-5.298 (* Nondetect *)
Dec 12 1999	0.005 mg/l	-5.298 (* Nondetect *)
Dec 13 1999	0.005 mg/l	-5.298 (* Nondetect *)
Dec 14 1999	0.005 mg/l	-5.298 (* Nondetect *)
Dec 15 1999	0.005 mg/l	-5.298 (* Nondetect *)
Dec 16 1999	0.005 mg/l	-5.298 (* Nondetect *)
Dec 17 1999	0.005 mg/l	-5.298 (* Nondetect *)

Observations (N): 37 Nondetects (%ND):100

 Minimum:
 0.005 mg/l
 Ln Minimum:
 -5.298

 Maximum:
 10.000 mg/l
 Ln Maximum:
 2.303

 Mean:
 3.517 mg/l
 Ln Mean:
 -2.628

 Std. Dev.:
 4.837 mg/l
 Ln Std. Dev.:
 3.679

Sample Date	Observation	Ln
Mar 31 1996	0.005 mg/l	-5.298 (* Nondetect *)
Jun 30 1996	0.005 mg/l	-5.298 (* Nondetect *)
Sep 30 1996	0.005 mg/l	-5.298 (* Nondetect *)
Dec 31 1996	0.005 mg/l	-5.298 (* Nondetect *)
Mar 31 1997	0.005 mg/l	-5.298 (* Nondetect *)
Jun 30 1997	0.005 mg/l	-5.298 (* Nondetect *)
Sep 30 1997	0.005 mg/l	-5.298 (* Nondetect *)
Dec 31 1997	0.005 mg/l	-5.298 (* Nondetect *)
Mar 09 1998	0.005 mg/l	-5.298 (* Nondetect *)
May 14 1998	0.005 mg/l	-5.298 (* Nondetect *)
Aug 14 1998	0.005 mg/l	-5.298 (* Nondetect *)
Nov 23 1998	0.005 mg/l	-5.298 (* Nondetect *)
Mar 13 1999	0.005 mg/l	-5.298 (* Nondetect *)
May 27 1999	0.005 mg/l	-5.298 (* Nondetect *)
Jul 27 1999	0.005 mg/l	-5.298 (* Nondetect *)
Nov 08 1999	0.005 mg/l	-5.298 (* Nondetect *)
Dec 10 1999	0.005 mg/l	-5.298 (* Nondetect *)
Dec 11 1999	0.005 mg/l	-5.298 (* Nondetect *)
Dec 12 1999	0.005 mg/l	-5.298 (* Nondetect *)
Dec 13 1999	0.005 mg/l	-5.298 (* Nondetect *)
Dec 14 1999	0.005 mg/l	-5.298 (* Nondetect *)
Dec 15 1999	0.005 mg/l	-5.298 (* Nondetect *)
Dec 16 1999	0.005 mg/l	-5.298 (* Nondetect *)
Dec 17 1999	0.005 mg/l	-5.298 (* Nondetect *)
Dec 18 1999	10.000 mg/l	2.303 (* Nondetect *)
Dec 19 1999	10.000 mg/l	2.303 (* Nondetect *)
Dec 20 1999	10.000 mg/l	2.303 (* Nondetect *)
Dec 21 1999	10.000 mg/l	2.303 (* Nondetect *)
Dec 22 1999	10.000 mg/l	2.303 (* Nondetect *)

)
)
Ĺ
)
)
)
)
)

Observations (N): 37 Nondetects (%ND):100

> Minimum: 0.005 mg/l Ln Minimum: -5.298 Maximum: 10.000 mg/l Ln Maximum: 2.303

Mean:

3.517 mg/l Std. Dev.:

Ln Mean: -2.628 4.837 mg/l Ln Std. Dev.: 3.679

Report Printed: 05-10-2005 16:59

Facility:RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford County:PULASKI ST:VA Zip:

Contact: Phone:() -

Permit Type: Detection

Constituent: Phenols Phenols, total

CAS Number: 108-95-2 0.000 ppb 0.000 ppb 10.000 ppb MCL: ACL:

Detect Limit:

Start Date:Mar 31 1996 End Date: Dec 30 1999

Sample Date	Observation	Ln
Mar 31 1996	20.000 ppb	2.996
Jun 30 1996	5.000 ppb	1.609 (* Nondetect *)
Sep 30 1996	5.000 ppb	1.609 (* Nondetect *)
Dec 31 1996	5.000 ppb	1.609 (* Nondetect *)
Mar 31 1997	14.000 ppb	2.639
Jun 30 1997	5.000 ppb	1.609 (* Nondetect *)
Sep 30 1997	5.000 ppb	1.609 (* Nondetect *)
Dec 31 1997	5.000 ppb	1.609 (* Nondetect *)
Mar 09 1998	5.000 ppb	1.609 (* Nondetect *)
May 14 1998	5.000 ppb	1.609 (* Nondetect *)
Aug 14 1998	5.000 ppb	1.609 (* Nondetect *)
Nov 23 1998	5.000 ppb	1.609 (* Nondetect *)
Mar 13 1999	5.000 ppb	1.609 (* Nondetect *)
May 27 1999	5.000 ppb	1.609 (* Nondetect *)
Jul 27 1999	5.000 ppb	1.609 (* Nondetect *)
Nov 08 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 10 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 11 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 12 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 13 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 14 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 15 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 16 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 17 1999	5.000 ppb	1.609 (* Nondetect *)

Dec 18 1999 Dec 19 1999 Dec 20 1999 Dec 21 1999 Dec 22 1999 Dec 23 1999 Dec 24 1999 Dec 25 1999 Dec 26 1999 Dec 27 1999 Dec 28 1999 Dec 29 1999	5.000 ppb 5.000 ppb	1.609 (* Nondetect *) 2.565 1.609 (* Nondetect *) 1.609 (* Nondetect *) 1.609 (* Nondetect *) 1.609 (* Nondetect *)
Dec 29 1999 Dec 30 1999		` '

Observations (N): 37 Nondetects (%ND): 92

 Minimum:
 5.000 ppb
 Ln Minimum:
 1.609

 Maximum:
 20.000 ppb
 Ln Maximum:
 2.996

 Mean:
 5.865 ppb
 Ln Mean:
 1.701

 Std. Dev.:
 3.084 ppb
 Ln Std. Dev.:
 0.316

Sample Date	Observation	Ln
Mar 31 1996	5.000 ppb	1.609 (* Nondetect *)
Jun 30 1996	5.000 ppb	1.609 (* Nondetect *)
Sep 30 1996	5.000 ppb	1.609 (* Nondetect *)
Dec 31 1996	5.000 ppb	1.609 (* Nondetect *)
Mar 31 1997	5.000 ppb	1.609 (* Nondetect *)
Jun 30 1997	5.000 ppb	1.609 (* Nondetect *)
Sep 30 1997	5.000 ppb	1.609 (* Nondetect *)
Dec 31 1997	5.000 ppb	1.609 (* Nondetect *)
Mar 09 1998	5.000 ppb	1.609 (* Nondetect *)
May 14 1998	5.000 ppb	1.609 (* Nondetect *)
Aug 14 1998	5.000 ppb	1.609 (* Nondetect *)
Nov 23 1998	5.000 ppb	1.609 (* Nondetect *)
Mar 13 1999	5.000 ppb	1.609 (* Nondetect *)
May 27 1999	5.000 ppb	1.609 (* Nondetect *)
Jul 27 1999	5.000 ppb	1.609 (* Nondetect *)
Nov 08 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 10 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 11 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 12 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 13 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 14 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 15 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 16 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 17 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 18 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 19 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 20 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 21 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 22 1999	5.000 ppb	1.609 (* Nondetect *)
	-	

Dec 23 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 24 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 25 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 26 1999	12.000 ppb	2.485
Dec 27 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 28 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 29 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 30 1999	5.000 ppb	1.609 (* Nondetect *)

Observations (N): 37 Nondetects (%ND): 97

 Minimum:
 5.000 ppb
 Ln Minimum:
 1.609

 Maximum:
 12.000 ppb
 Ln Maximum:
 2.485

 Mean:
 5.189 ppb
 Ln Mean:
 1.633

 Std. Dev.:
 1.151 ppb
 Ln Std. Dev.:
 0.144

Normality Tests

Report Printed: 05-10-2005 16:59

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:VA Zip:

County:PULASKI

Contact:

Phone:() -

Permit Type: Detection

Constituent: Phenols Phenols, total

CAS Number: 108-95-2

MCL: 0.000 ppb ACL: 0.000 ppb

ACL: 0.000 ppb Detect Limit: 10.000 ppb

Start Date:Mar 31 1996 End Date:Dec 30 1999

Normality Test on Observations for wells listed below:

Well:13MW1 Position:Upgradient Observations:37

Scale Minimum Maximum Mean Std Dev Original: 5.000 20.000 5.865 3.084

Log: 1.609 2.996 1.701 0.316

Well:13MW2 Position:Upgradient Observations:37

Scale Minimum Maximum Mean Std Dev Original: 5.000 12.000 5.189 1.151

Log: 1.609 2.485 1.633 0.144

Pooled Statistics

Observations: 74

Statistic **Original** Log Scale Scale Mean: 5.527 1.667 Std Dev: 2.336 0.246 Skewness: 4.671* 4.192* **Kurtosis:** 22.128 16.382 Minimum: 5.000 1.609 2.996 20.000 Maximum:

CV: 0.4230.148

Shapiro-Francia Statistics

Test 5% Critical 1% Critical Scale Statistic Value Value Original: Log: 0.2166* 0.9690 0.9560 0.9560 0.2249* 0.9690

^{*} Indicates statistically significant evidence of non-normality. GRIT/STAT Version 5.0

Nonparametric Prediction Interval Report Printed May 10,2005

Facility:Haz. Waste Unit 13 - RAAP Parameter:Phenols, total(CAS Number:108-95-2)

ONE-TAILED UPPER PARAMETRIC PREDICTION INTERVAL

Observations (n): Conf. Level $(1-\alpha)$:

74

100.000%

20.0 UL: 5.000 ppb LL: 0.000

1,ND: 97%

Report Produced by GRITS/STAT 5.01

Page 1

Report Printed: 05-10-2005 17:05

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:VA Zip: County:PULASKI

Contact:
Phone:() -

Permit Type: Detection

Constituent: TOC Total Organic Carbon

CAS Number:

MCL: 0.000 ppb ACL: 0.000 ppb

Detect Limit: 2000.000 ppb

Start Date:Mar 31 1996 End Date:Dec 30 1999

Sample Date	Observation	Ln
Mar 31 1996	500.000 ppb	6.215 (* Nondetect *)
Jun 30 1996	3000.000 ppb	8.006
Sep 30 1996	500.000 ppb	6.215 (* Nondetect *)
Dec 31 1996	500.000 ppb	6.215 (* Nondetect *)
Mar 31 1997	500.000 ppb	6.215 (* Nondetect *)
Jun 30 1997	2000.000 ppb	7.601
Sep 30 1997	500.000 ppb	6.215 (* Nondetect *)
Dec 31 1997	500.000 ppb	6.215 (* Nondetect *)
Mar 09 1998	500.000 ppb	6.215 (* Nondetect *)
May 14 1998		6.215 (* Nondetect *)
Aug 14 1998	500.000 ppb	6.215 (* Nondetect *)
Nov 23 1998	500.000 ppb	6.215 (* Nondetect *)
Mar 13 1999	1725.000 ppb	7.453
May 27 1999	500.000 ppb	6.215 (* Nondetect *)
Jul 27 1999	500.000 ppb	6.215 (* Nondetect *)
Nov 08 1999	500.000 ppb	6.215 (* Nondetect *)
Dec 10 1999	500.000 ppb	6.215 (* Nondetect *)
Dec 11 1999	500.000 ppb	6.215 (* Nondetect *)
Dec 12 1999	1550.000 ppb	7.346
Dec 13 1999	500.000 ppb	6.215 (* Nondetect *)
Dec 14 1999	500.000 ppb	6.215 (* Nondetect *)
Dec 15 1999	500.000 ppb	6.215 (* Nondetect *)
Dec 16 1999	500.000 ppb	6.215 (* Nondetect *)
Dec 17 1999	500.000 ppb	6.215 (* Nondetect *)

Dec 18 1999 Dec 19 1999 Dec 20 1999 Dec 21 1999 Dec 22 1999 Dec 23 1999 Dec 24 1999 Dec 25 1999 Dec 26 1999 Dec 27 1999 Dec 28 1999 Dec 29 1999 Dec 30 1999	1000.000 ppb 1000.000 ppb 1000.000 ppb 1000.000 ppb 1000.000 ppb 2177.000 ppb 10600.000 ppb 10600.000 ppb 5682.000 ppb 8370.000 ppb 1000.000 ppb 1000.000 ppb	6.908 (* Nondetect *) 7.686 9.269 9.269 8.645 9.032 6.908 (* Nondetect *) 6.908 (* Nondetect *) 6.908 (* Nondetect *)
Dec 30 1999	1000.000 ppb	6.908 (* Nondetect *)

Observations (N): 37 Nondetects (%ND): 76

 Minimum:
 500.000 ppb
 Ln Minimum:
 6.215

 Maximum:
 10600.000 ppb
 Ln Maximum:
 9.269

 Mean:
 1721.730 ppb
 Ln Mean:
 6.861

 Std. Dev.:
 2653.605 ppb
 Ln Std. Dev.:
 0.928

Sample Date	Observation	Ln
Mar 31 1996	500.000 ppb	6.215 (* Nondetect *)
Jun 30 1996	3000.000 ppb	8.006
Sep 30 1996	500.000 ppb	6.215 (* Nondetect *)
Dec 31 1996	500.000 ppb	6.215 (* Nondetect *)
Mar 31 1997	500.000 ppb	6.215 (* Nondetect *)
Jun 30 1997	2000.000 ppb	7.601
Sep 30 1997	500.000 ppb	6.215 (* Nondetect *)
Dec 31 1997	500.000 ppb	6.215 (* Nondetect *)
Mar 09 1998	500.000 ppb	6.215 (* Nondetect *)
May 14 1998	1400.000 ppb	7.244
Aug 14 1998	500.000 ppb	6.215 (* Nondetect *)
Nov 23 1998	500.000 ppb	6.215 (* Nondetect *)
Mar 13 1999	8625.000 ppb	9.062
May 27 1999	500.000 ppb	6.215 (* Nondetect *)
Jul 27 1999	500.000 ppb	6.215 (* Nondetect *)
Nov 08 1999	500.000 ppb	6.215 (* Nondetect *)
Dec 10 1999	500.000 ppb	6.215 (* Nondetect *)
Dec 11 1999	500.000 ppb	6.215 (* Nondetect *)
Dec 12 1999	1625.000 ppb	7.393
Dec 13 1999	500.000 ppb	6.215 (* Nondetect *)
Dec 14 1999	500.000 ppb	6.215 (* Nondetect *)
Dec 15 1999	500.000 ppb	6.215 (* Nondetect *)
Dec 16 1999	500.000 ppb	6.215 (* Nondetect *)
Dec 17 1999	500.000 ppb	6.215 (* Nondetect *)
Dec 18 1999	1000.000 ppb	6.908 (* Nondetect *)
Dec 19 1999	1000.000 ppb	6.908 (* Nondetect *)
Dec 20 1999	1000.000 ppb	6.908 (* Nondetect *)
Dec 21 1999	1000.000 ppb	6.908 (* Nondetect *)
Dec 22 1999	1000.000 ppb	6 008 (* Nondatast *)
200 == 1777	1000.000 ppb	6.908 (* Nondetect *)

Dec 23 1999	3550.000 ppb	8.175
Dec 24 1999	1505.000 ppb	7.317
Dec 25 1999	8417.000 ppb	9.038
Dec 26 1999	5972.000 ppb	8.695
Dec 27 1999	8255.000 ppb	9.019
Dec 28 1999	1000.000 ppb	6.908 (* Nondetect *)
Dec 29 1999	1000.000 ppb	6.908 (* Nondetect *)
Dec 30 1999	1042.000 ppb	6.949 `
	**	

Observations (N): 37 Nondetects (%ND): 70

 Minimum:
 500.000 ppb
 Ln Minimum:
 6.215

 Maximum:
 8625.000 ppb
 Ln Maximum:
 9.062

 Mean:
 1672.730 ppb
 Ln Mean:
 6.890

 Std. Dev.:
 2302.313 ppb
 Ln Std. Dev.:
 0.909

Normality Tests

Report Printed: 05-10-2005 17:02

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:VA Zip:

County: PULASKI

Contact:

Phone:() -

Permit Type: Detection

Constituent: TOC Total Organic Carbon

CAS Number:

MCL: 0.000 ppb

ACL: 0.000 ppb

Detect Limit: 2000.000 ppb

Start Date:Mar 31 1996 End Date:Dec 30 1999

Normality Test on Observations for wells listed below:

Well:13MW1 Position:Upgradient Observations:37

 Scale
 Minimum
 Maximum
 Mean
 Std Dev

 Original:
 500.000
 10600.000
 1721.730
 2653.605

Log: 6.215 9.269 6.861 0.928

Well:13MW2 Position:Upgradient Observations:37

Scale Minimum Maximum Mean Std Dev Original: 500.000 8625.000 1672.730 2302.313

Log: 6.215 9.062 6.890 0.909

Pooled Statistics

Observations: 74

Statistic Original Log Scale Scale

Mean: 1697.230 6.876 Std Dev: 2467.227 0.912

Skewness: 2.485* 1.364* Kurtosis: 5.030 0.781

Minimum: 500.000 6.215 Maximum: 10600.000 9.269 CV: 1.454 0.133

Shapiro-Francia Statistics

Test 5% Critical 1% Critical Scale Statistic Value Value Original: 0.5304* Log: 0.7452* 0.9690 0.9560 0.9690 0.9560

^{*} Indicates statistically significant evidence of non-normality. GRIT/STAT Version 5.0

Nonparametric Prediction Interval Report Printed May 10,2005

Page 1

Facility: Haz. Waste Unit 13 - RAAP

Parameter: Total Organic Carbon(CAS Number:- -)

ONE-TAILED UPPER PARAMETRIC PREDICTION INTERVAL

Observations (n):

Conf. Level $(1-\alpha)$:

.%

UL: 300.000 ppb

LL: 0.000

Y.ND: 73%.

Normality Tests

Report Printed: 05-10-2005 17:10

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:VA Zip:

County: PULASKI

Contact:

Phone:() -

Permit Type:Detection

Constituent: TOX Total Organic Halogens, Halides

CAS Number:

MCL: 0.000 ppb

ACL: 0.000 ppb

Detect Limit: 40.000 ppb

Start Date:Mar 31 1996 End Date:Dec 30 1999

Normality Test on Observations for wells listed below:

Well:13MW1 Position:Upgradient Observations:37

 Scale
 Minimum
 Maximum
 Mean
 Std Dev

 Original:
 2.500
 38.000
 10.932
 10.539

 Log:
 0.916
 3.638
 1.874
 1.056

Well:13MW2 Position:Upgradient Observations:37

 Scale
 Minimum
 Maximum
 Mean
 Std Dev

 Original:
 2.500
 54.500
 10.405
 11.289

 Log:
 0.916
 3.998
 1.789
 1.059

Pooled Statistics

Observations: 74

Statistic **Original** Log Scale Scale 10.669 1.831 Mean: Std Dev: 10.849 1.051 Skewness: 1.378* 0.399 Kurtosis: 2.259 -1.616 2.500 Minimum: 0.916 54.500 3.998 Maximum:

CV: 1.017 0.574

Shapiro-Francia Statistics

Test 5% Critical 1% Critical Scale Statistic Value Value Original: 0.7158* 0.9690 0.956

0.9560 Log: 0.7407* 0.9690 0.9560

 $[\]mbox{*}$ Indicates statistically significant evidence of non-normality. GRIT/STAT Version 5.0

Report Printed: 05-10-2005 17:10

Facility:RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford County:PULASKI ST:VA Zip:

Contact: Phone:() -

Permit Type:Detection

Constituent: TOX Total Organic Halogens, Halides

CAS Number:

0.000 ppb 0.000 ppb MCL: ACL: Detect Limit: 40.000 ppb

Start Date:Mar 31 1996 End Date: Dec 30 1999

Sample Date	Observation	Ln
Mar 31 1996	2.500 ppb	0.916 (* Nondetect *)
Jun 30 1996	2.500 ppb	0.916 (* Nondetect *)
Sep 30 1996	2.500 ppb	0.916 (* Nondetect *)
Dec 31 1996	2.500 ppb	0.916 (* Nondetect *)
Mar 31 1997	2.500 ppb	0.916 (* Nondetect *)
Jun 30 1997	2.500 ppb	0.916 (* Nondetect *)
Sep 30 1997	2.500 ppb	0.916 (* Nondetect *)
Dec 31 1997	9.000 ppb	2.197
Mar 09 1998	2.500 ppb	0.916 (* Nondetect *)
May 14 1998	5.500 ppb	1.705
Aug 14 1998	2.500 ppb	0.916 (* Nondetect *)
Nov 23 1998	25.500 ppb	3.239
Mar 13 1999	2.500 ppb	0.916 (* Nondetect *)
May 27 1999	2.500 ppb	0.916 (* Nondetect *)
Jul 27 1999	6.500 ppb	1.872
Nov 08 1999	14.500 ppb	2.674
Dec 10 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 11 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 12 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 13 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 14 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 15 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 16 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 17 1999	2.500 ppb	0.916 (* Nondetect *)
		·

Observations (N): 37 Nondetects (%ND): 81

 Minimum:
 2.500 ppb
 Ln Minimum:
 0.916

 Maximum:
 38.000 ppb
 Ln Maximum:
 3.638

 Mean:
 10.932 ppb
 Ln Mean:
 1.874

 Std. Dev.:
 10.539 ppb
 Ln Std. Dev.:
 1.056

Comple Data	Observation	Ι
Sample Date Mar 31 1996		Ln 0.016 (* Nondetect *)
Jun 30 1996	2.500 ppb	0.916 (* Nondetect *)
	2.500 ppb	0.916 (* Nondetect *)
Sep 30 1996	2.500 ppb	0.916 (* Nondetect *)
Dec 31 1996	2.500 ppb	0.916 (* Nondetect *)
Mar 31 1997	2.500 ppb	0.916 (* Nondetect *)
Jun 30 1997	2.500 ppb	0.916 (* Nondetect *)
Sep 30 1997	2.500 ppb	0.916 (* Nondetect *)
Dec 31 1997	2.500 ppb	0.916 (* Nondetect *)
Mar 09 1998	2.500 ppb	0.916 (* Nondetect *)
May 14 1998	6.000 ppb	1.792
Aug 14 1998	2.500 ppb	0.916 (* Nondetect *)
Nov 23 1998	7.500 ppb	2.015
Mar 13 1999	2.500 ppb	0.916 (* Nondetect *)
May 27 1999	2.500 ppb	0.916 (* Nondetect *)
Jul 27 1999	2.500 ppb	0.916 (* Nondetect *)
Nov 08 1999	24.500 ppb	3.199
Dec 10 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 11 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 12 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 13 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 14 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 15 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 16 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 17 1999	2.500 ppb	0.916 (* Nondetect *)
Dec 18 1999	20.000 ppb	2.996 (* Nondetect *)
Dec 19 1999	20.000 ppb	2.996 (* Nondetect *)
Dec 20 1999	20.000 ppb	2.996 (* Nondetect *)
Dec 21 1999	20.000 ppb	2.996 (* Nondetect *)
Dec 22 1999	20.000 ppb	2.996 (* Nondetect *)
	- 1	` '

Dec 23 1999	20.000 ppb	2.996 (* Nondetect *)
Dec 24 1999	20.000 ppb	2.996 (* Nondetect *)
Dec 25 1999	20.000 ppb	2.996 (* Nondetect *)
Dec 26 1999	20.000 ppb	2.996 (* Nondetect *)
Dec 27 1999	20.000 ppb	2.996 (* Nondetect *)
Dec 28 1999	20.000 ppb	2.996 (* Nondetect *)
Dec 29 1999	20.000 ppb	2.996 (* Nondetect *)
Dec 30 1999	54.500 ppb	3.998

Observations (N): 37 Nondetects (%ND): 89

 Minimum:
 2.500 ppb
 Ln Minimum:
 0.916

 Maximum:
 54.500 ppb
 Ln Maximum:
 3.998

 Mean:
 10.405 ppb
 Ln Mean:
 1.789

 Std. Dev.:
 11.289 ppb
 Ln Std. Dev.:
 1.059

Nonparametric Prediction Interval

Report Printed May 10,2005

Facility:Haz. Waste Unit 13 - RAAP Parameter:Total Organic Halogens, Halides(CAS Number:- -)

ONE-TAILED UPPER PARAMETRIC PREDICTION INTERVAL

Observations (n):

Conf. Level $(1-\alpha)$:

100.000%

54.5 UL: ≥500 ppb

LL: 0.000

1.ND: 85%.

Page 1

Data Set Summary

Report Printed: 05-10-2005 17:13

Facility:RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford County:PULASKI ST:VA Zip:

Contact:

Phone:() -

Permit Type: Detection

Constituent: Cond F Specific Conductivity, Field

CAS Number:

MCL: 0.000 umhos/cm

ACL:

0.000 umhos/cm

Detect Limit:

2.000 umhos/cm

Start Date:Mar 31 1996 End Date:Dec 30 1999

Sample Date	Observation	Ln
Mar 31 1996	707.500 umhos/cm	6.562
Sep 30 1997	717.500 umhos/cm	6.576
Dec 31 1997	692.500 umhos/cm	6.540
Mar 09 1998	660.000 umhos/cm	6.492
May 14 1998	590.000 umhos/cm	6.380
Aug 14 1998	613.000 umhos/cm	6.418
Nov 23 1998	660.000 umhos/cm	6.492
Mar 13 1999	1940.000 umhos/cm	7.570
May 27 1999	6870.000 umhos/cm	8.835
Jul 27 1999	759.000 umhos/cm	6.632
Nov 08 1999	896.000 umhos/cm	6.798
Dec 10 1999	634.000 umhos/cm	6.452
Dec 11 1999	599.000 umhos/cm	6.395
Dec 12 1999	506.000 umhos/cm	6.227
Dec 13 1999	871.000 umhos/cm	6.770
Dec 14 1999	754.000 umhos/cm	6.625
Dec 15 1999	457.000 umhos/cm	6.125
Dec 16 1999	762.000 umhos/cm	6.636
Dec 17 1999	730.000 umhos/cm	6.593
Dec 18 1999	732.000 umhos/cm	6.596
Dec 19 1999	665.000 umhos/cm	6.500
Dec 20 1999	733.000 umhos/cm	6.597
Dec 21 1999	729.000 umhos/cm	6.592
Dec 23 1999	430.000 umhos/cm	6.064

490.000 umhos/cm	6.194
640.000 umhos/cm	6.461
690.000 umhos/cm	6.537
440.000 umhos/cm	6.087
610.000 umhos/cm	6.413
620.000 umhos/cm	6.430
720.000 umhos/cm	6.579
	640.000 umhos/cm 690.000 umhos/cm 440.000 umhos/cm 610.000 umhos/cm 620.000 umhos/cm

Observations (N): 31 Nondetects (%ND): 0

 Minimum:
 430.000 umhos/cm
 Ln Minimum:
 6.064

 Maximum:
 6870.000 umhos/cm
 Ln Maximum:
 8.835

 Mean:
 900.564 umhos/cm
 Ln Mean:
 6.586

 Std. Dev.:
 1136.958 umhos/cm
 Ln Std. Dev.:
 0.495

Well ID:13MW2

Sample Date	Observation	Ln
Mar 31 1996	582.500 umhos/cm	6.367
Sep 30 1997	567.500 umhos/cm	6.341
Dec 31 1997	570.000 umhos/cm	6.346
Mar 09 1998	568.000 umhos/cm	6.342
May 14 1998	573.000 umhos/cm	6.351
Aug 14 1998	553.000 umhos/cm	6.315
Nov 23 1998	560.000 umhos/cm	6.328
Mar 13 1999	500.000 umhos/cm	6.215
May 27 1999	5810.000 umhos/cm	8.667
Jul 27 1999	589.000 umhos/cm	6.378
Nov 08 1999	687.000 umhos/cm	6.532
Dec 10 1999	495.000 umhos/cm	6.205
Dec 11 1999	568.000 umhos/cm	6.342
Dec 12 1999	601.000 umhos/cm	6.399
Dec 13 1999	689.000 umhos/cm	6.535
Dec 14 1999	618.000 umhos/cm	6.426
Dec 15 1999	574.000 umhos/cm	6.353
Dec 16 1999	613.000 umhos/cm	6.418
Dec 17 1999	617.000 umhos/cm	6.425
Dec 18 1999	612.000 umhos/cm	6.417
Dec 19 1999	648.000 umhos/cm	6.474
Dec 20 1999	610.000 umhos/cm	6.413
Dec 21 1999	621.000 umhos/cm	6.431
Dec 23 1999	630.000 umhos/cm	6.446
Dec 24 1999	670.000 umhos/cm	6.507
Dec 25 1999	600.000 umhos/cm	6.397
Dec 26 1999	750.000 umhos/cm	6.620
Dec 27 1999	450.000 umhos/cm	6.109
Dec 28 1999	550.000 umhos/cm	6.310
Dec 29 1999	670.000 umhos/cm	6.507
Dec 30 1999	710.000 umhos/cm	6.565

Well ID:13MW2 Summary Statistics

Observations (N): 31 Nondetects (%ND): 0

450.000 umhos/cm 6.109 Minimum: Ln Minimum: Maximum:

Mean: 769.548 umhos/cm Ln Mean: Std. Dev.: 937.607 umhos/cm Ln Std. Dev.: 0.422

Normality Tests

Report Printed: 05-10-2005 17:12

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:VA Zip:

County:PULASKI

Contact:

Phone:() -

Permit Type: Detection

Constituent: Cond F Specific Conductivity, Field

CAS Number:

Number: -

MCL: 0.000 umhos/cm

ACL:

0.000 umhos/cm

Detect Limit:

2.000 umhos/cm

Start Date:Mar 31 1996 End Date:Dec 30 1999

Normality Test on Observations for wells listed below:

Well:13MW1 Position:Upgradient Observations:31

Scale Minimum Maximum Mean Std Dev Original: 430.000 6870.000 900.564 1136.958

Log: 6.064 8.835 6.586 0.495

Well:13MW2 Position:Upgradient Observations:31

Scale Minimum Maximum Mean Std Dev Original: 450.000 5810.000 769.548 937.607

Log: 6.109 8.667 6.467 0.422

Pooled Statistics

Observations: 62

Original Statistic Log Scale Scale Mean: 835.056 6.527 Std Dev: 1035.592 0.4605.111* 3.858* Skewness: **Kurtosis:** 25.116 15.873 Minimum: 430.000 6.064

Maximum: 6870.000 8.835

CV: 1.240 0.071

Shapiro-Francia Statistics

Test 5% Critical 1% Critical Scale Statistic Value Value Original: 0.2489* Log: 0.5030* 0.9640 0.9470 0.9640 0.9470

^{*} Indicates statistically significant evidence of non-normality. GRIT/STAT Version 5.0

Nonparametric Prediction Interval Report Printed May 10,2005

Page 1

Facility:Haz. Waste Unit 13 - RAAP Parameter:Specific Conductivity, Field(CAS Number:- -)

ONE-TAILED UPPER PARAMETRIC PREDICTION INTERVAL

Observations (n):

62

Conf. Level $(1-\alpha)$:

100.000%

UL: 430.000 umhos/cm

1, ND: 0

Data Set Summary

Report Printed: 05-10-2005 17:13

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:VA Zip: County:PULASKI

Contact:

Phone:() -

Permit Type: Detection

Constituent:pH F pH, Field

CAS Number:

MCL: 0.000 SU

ACL: 0.000 SU

Detect Limit: 0.100 SU

Start Date:Mar 31 1996 End Date:Dec 30 1999

Sample Date	Observation		Ln
Mar 31 1996			1.960
Sep 30 1997	7.200 SU		1.974
Dec 31 1997	7.200 SU		1.974
Mar 09 1998	6.700 SU		1.902
May 14 1998	6.300 SU		1.841
Aug 14 1998	6.500 SU		1.872
Nov 23 1998	7.000 SU		1.946
Mar 13 1999	6.700 SU		1.902
May 27 1999	6.990 SU		1.944
Jul 27 1999	7.030 SU		1.950
Nov 08 1999	6.950 SU		1.939
Dec 10 1999	6.820 SU		1.920
Dec 11 1999	6.600 SU		1.887
Dec 12 1999	6.390 SU		1.855
Dec 13 1999	5.720 SU		1.744
Dec 14 1999	7.010 SU		1.947
Dec 15 1999	6.480 SU		1.869
Dec 16 1999	6.520 SU _c	_	1.875
Dec 17 1999	6.690 SU `	\leq	1.901
Dec 18 1999	6.940 SU)	1.937
Dec 19 1999	6.570 SU		1.883
Dec 20 1999	6.550 SU	/	1.879
Dec 21 1999	6.650 SU	1	1.895
Dec 23 1999	6.670 SU		1.898

Dec 24 1999	6.400 SU	1.856
Dec 25 1999	6.930 SU	1.936
Dec 26 1999	6.640 SU	1.893
Dec 27 1999	6.720 SU	1.905
Dec 28 1999	6.470 SU	1.867
Dec 29 1999	7.020 SU	1.949
Dec 30 1999	7.250 SU	1.981

Observations (N): 31 Nondetects (%ND): 0

> Minimum: 5.720 SU Ln Minimum: 1.744 Ln Maximum: Maximum: 7.250 SU 1.981 1.906 Mean: 6.733 SU Ln Mean: Std. Dev.: 0.323 SU Ln Std. Dev.: 0.049

Well ID:13MW2

Sample Date	Observation	Ln
Mar 31 1996	7.400 SU	2.001
Sep 30 1997	7.800 SU	2.054
Dec 31 1997	7.200 SU	1.974
Mar 09 1998	6.800 SU	1.917
May 14 1998	6.700 SU	1.902
Aug 14 1998	6.700 SU	1.902
Nov 23 1998	7.100 SU	1.960
Mar 13 1999	7.700 SU	2.041
May 27 1999	7.180 SU	1.971
Jul 27 1999	7.170 SU	1.970
Nov 08 1999	7.090 SU	1.959
Dec 10 1999	6.910 SU	1.933
Dec 11 1999	6.960 SU	1.940
Dec 12 1999	6.710 SU	1.904
Dec 13 1999	6.200 SU	1.825
Dec 14 1999	7.090 SU	1.959
Dec 15 1999	6.830 SU	1.921
Dec 16 1999	6.670 SU	1.898
Dec 17 1999	6.790 SU	1.915
Dec 18 1999	7.060 SU	1.954
Dec 19 1999	6.840 SU	1.923
Dec 20 1999	6.670 SU	1.898
Dec 21 1999	6.710 SU	1.904
Dec 23 1999	7.130 SU	1.964
Dec 24 1999	7.030 SU	1.950
Dec 25 1999	7.070 SU	1.956
Dec 26 1999	7.020 SU	1.949
Dec 27 1999	7.090 SU	1.959
Dec 28 1999	7.220 SU	1.977
Dec 29 1999	6.970 SU	1.942
Dec 30 1999	7.500 SU	2.015

Well ID:13MW2 Summary Statistics

Observations (N): 31 Nondetects (%ND): 0

6.200 SU 7.800 SU Minimum: Ln Minimum: 1.825 Maximum: Ln Maximum: 2.054 Ln Mean: 1.946

7.010 SU 0.322 SU Mean: Std. Dev.: Ln Std. Dev.: 0.046

Normality Tests

Report Printed: 05-10-2005 17:14

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:

ST:VA Zip:

County:PULASKI

Contact:

Phone:() -

Permit Type: Detection

Constituent:pH F pH, Field

CAS Number:

MCL:

0.000 SU

ACL:

 $0.000~\mathrm{SU}$

Detect Limit:

0.100 SU

Start Date:Mar 31 1996 End Date:Dec 30 1999

Normality Test on Observations for wells listed below:

Well:13MW1 Position: Upgradient Observations:31

 Scale
 Minimum
 Maximum
 Mean
 Std Dev

 Original:
 5.720
 7.250
 6.733
 0.323

 Log:
 1.744
 1.981
 1.906
 0.049

Well:13MW2 Position:Upgradient Observations:31

 Scale
 Minimum
 Maximum
 Mean
 Std Dev

 Original:
 6.200
 7.800
 7.010
 0.322

 Log:
 1.825
 2.054
 1.946
 0.046

Pooled Statistics

Observations: 62

Statistic Original Log Scale Scale Mean: 6.871 1.926 Std Dev: 0.349 0.051 Skewness: -0.187-0.447**Kurtosis:** 1.327 1.708 Minimum: 5.720 1.744 7.800 Maximum: 2.054 CV: 0.051 0.027

Shapiro-Francia Statistics

Test 5% Critical 1% Critical

 Scale Statistic
 Value
 Value

 Original:
 0.9566*
 0.9640
 0.9470

 Log:
 0.9489*
 0.9640
 0.9470

^{*} Indicates statistically significant evidence of non-normality. GRIT/STAT Version 5.0

Nonparametric Prediction Interval

Report Printed May 10,2005

Facility:Haz. Waste Unit 13 - RAAP Parameter:pH, Field(CAS Number:- -)

TWO-TAILED PARAMETRIC PREDICTION INTERVAL

Observations (n):

Conf. Level $(1-\alpha)$:

62 100.000%

UL: 6-930 SU 7.80 SU LL: 6.910 SU 5.72 SU Page 1

Data Set Summary

Report Printed: 05-10-2005 17:17

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:VA Zip: County:PULASKI

Contact:
Phone:() -

Permit Type: Detection

Constituent: Nitrate Nitrate

CAS Number: 14797-55-8

MCL: 0.000 ppb

ACL: 0.000 ppb

Detect Limit: 100.000 ppb

Start Date:Mar 31 1996 End Date:Dec 30 1999

Sample Date	Observation	Ln
Mar 31 1996	700.000 ppb	6.551
Jun 30 1996	700.000 ppb	6.551
Sep 30 1996	500.000 ppb	6.215
Dec 31 1996	600.000 ppb	6.397
Mar 31 1997	700.000 ppb	6.551
Jun 30 1997	700.000 ppb	6.551
Sep 30 1997	900.000 ppb	6.802
Dec 31 1997	700.000 ppb	6.551
Mar 09 1998	480.000 ppb	6.174
May 14 1998	360.000 ppb	5.886
Aug 14 1998	440.000 ppb	6.087
Nov 23 1998	560.000 ppb	6.328
Mar 13 1999	410.000 ppb	6.016
May 27 1999	230.000 ppb	5.438
Jul 27 1999	380.000 ppb	5.940
Nov 08 1999	430.000 ppb	6.064
Dec 10 1999	430.000 ppb	6.064
Dec 11 1999	130.000 ppb	4.868
Dec 12 1999	900.000 ppb	6.802
Dec 13 1999	310.000 ppb	5.737
Dec 14 1999	320.000 ppb	5.768
Dec 15 1999	150.000 ppb	5.011
Dec 16 1999	380.000 ppb	5.940
Dec 17 1999	400.000 ppb	5.991

Dec 18 1999	340.000 ppb	5.829
Dec 19 1999	250.000 ppb	5.521
Dec 20 1999	260.000 ppb	5.561
Dec 21 1999	380.000 ppb	5.940
Dec 22 1999	300.000 ppb	5.704
Dec 23 1999	300.000 ppb	5.704
Dec 24 1999	50.000 ppb	3.912 (* Nondetect *)

Observations (N): 31 Nondetects (%ND): 3

 Minimum:
 50.000 ppb
 Ln Minimum:
 3.912

 Maximum:
 900.000 ppb
 Ln Maximum:
 6.802

 Mean:
 441.613 ppb
 Ln Mean:
 5.950

 Std. Dev.:
 212.259 ppb
 Ln Std. Dev.:
 0.600

Well ID:13MW2

Sample Date	Observation	Ln
Mar 31 1996	600.000 ppb	6.397
Jun 30 1996	800.000 ppb	6.685
Sep 30 1996	700.000 ppb	6.551
Dec 31 1996	800.000 ppb	6.685
Mar 31 1997	700.000 ppb	6.551
Jun 30 1997	900.000 ppb	6.802
Sep 30 1997	700.000 ppb	6.551
Dec 31 1997	600.000 ppb	6.397
Mar 09 1998	790.000 ppb	6.672
May 14 1998	380.000 ppb	5.940
Aug 14 1998	640.000 ppb	6.461
Nov 23 1998	600.000 ppb	6.397
Mar 13 1999	710.000 ppb	6.565
May 27 1999	860.000 ppb	6.757
Jul 27 1999	890.000 ppb	6.791
Nov 08 1999	920.000 ppb	6.824
Dec 10 1999	50.000 ppb	3.912 (* Nondetect *)
Dec 11 1999	920.000 ppb	6.824
Dec 12 1999	1050.000 ppb	6.957
Dec 13 1999	1360.000 ppb	7.215
Dec 14 1999	1200.000 ppb	7.090
Dec 15 1999	1160.000 ppb	7.056
Dec 16 1999	1190.000 ppb	7.082
Dec 17 1999	710.000 ppb	6.565
Dec 18 1999	920.000 ppb	6.824
Dec 19 1999	750.000 ppb	6.620
Dec 20 1999	580.000 ppb	6.363
Dec 22 1999	800.000 ppb	6.685
Dec 23 1999	700.000 ppb	6.551
Dec 24 1999	441.000 ppb	6.089

Well ID:13MW2 Summary Statistics

Observations (N): 30

Nondetects (%ND): 3

Ln Minimum: 3.9 Ln Maximum: 7 Mean: 6.562 Minimum: 50.000 ppb Maximum: 1360.000 ppb Mean: 780.700 ppb Std. Dev.: 262.094 ppb 3.912 7.215

Mean: Std. Dev.: Ln Std. Dev.: 0.574

Normality Tests

Report Printed: 05-10-2005 17:17

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford

ST:VA Zip:

County:PULASKI

Contact:

Phone:() -

Permit Type: Detection

Constituent: Nitrate Nitrate

CAS Number: 14797-55-8

MCL:

0.000 ppb

ACL:

0.000 ppb

Detect Limit:

100.000 ppb

Start Date: Mar 31 1996 End Date:Dec 30 1999

Normality Test on Observations for wells listed below:

Well:13MW1

Position: Upgradient Observations: 31

Scale

Minimum 50.000

Maximum 900.000

Mean 441.613 212.259

Original: Log:

3.912

6.802

5.950

0.600

Std Dev

Well:13MW2

Position: Upgradient Observations: 30

Scale Original: Minimum 50.000

Maximum 1360.000

Mean 780.700

Std Dev 262.094

Log:

3.912

7.215

6.562

0.574

Pooled Statistics

Observations: 61

Statistic

Original Log

Scale Scale

Mean:

608.377

6.251

Std Dev:

291.453

0.659

Skewness: **Kurtosis:**

0.269 -0.285

-1.602* 3.355

Minimum: Maximum:

50.000 1360.000 3.912 7.215 CV: 0.479 0.105

Shapiro-Francia Statistics

Test 5% Critical 1% Critical
Scale Statistic Value Value
Original: 0.9813 0.9630 0.9470
Log: 0.8553* 0.9630 0.9470

^{*} Indicates statistically significant evidence of non-normality. GRIT/STAT Version 5.0

```
Facility: Haz. Waste Unit 13 - RAAP
```

Parameter: Nitrate (CAS Number: 14797-55-8)

ONE-TAILED UPPER PARAMETRIC PREDICTION INTERVAL

```
Observations (n):
                                 61
Shapiro-Francia
                     (W):
                            0.9813
  Critical W,\alpha = 0.01:
                            0.9470
                   Mean:
                           608.377 ppb
                           291.453 ppb
                Std Dev:
                      DF:
                                 60
  Conf. Level (1-\alpha):
                           0.9500
 Future Samples (k):
                                  5
           t-1-α-:
                              2.3901
                  Kappa:
                              2.4096
                      UL: 1310.672 ppb
                      LL: -∞
                 Y.ND: 3%.
```

Data Set Summary

Report Printed: 05-10-2005 17:19

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford ST:VA Zip: County:PULASKI

Contact:
Phone:() -

Permit Type: Detection

Constituent: Nitrite Nitrite

CAS Number: 14797-65-0
MCL: 0.000 ppb
ACL: 0.000 ppb
Detect Limit: 10.000 ppb

Start Date:Mar 31 1996 End Date:Dec 30 1999

Sample Date	Observation	Ln
Mar 31 1996	5.000 ppb	1.609 (* Nondetect *)
Jun 30 1996	5.000 ppb	1.609 (* Nondetect *)
Sep 30 1996	5.000 ppb	1.609 (* Nondetect *)
Dec 31 1996	5.000 ppb	1.609 (* Nondetect *)
Mar 31 1997	5.000 ppb	1.609 (* Nondetect *)
Jun 30 1997	5.000 ppb	1.609 (* Nondetect *)
Sep 30 1997	5.000 ppb	1.609 (* Nondetect *)
Dec 31 1997	5.000 ppb	1.609 (* Nondetect *)
Mar 09 1998	5.000 ppb	1.609 (* Nondetect *)
May 14 1998		1.609 (* Nondetect *)
Aug 14 1998	5.000 ppb	1.609 (* Nondetect *)
Nov 23 1998	5.000 ppb	1.609 (* Nondetect *)
Mar 13 1999	5.000 ppb	1.609 (* Nondetect *)
May 27 1999	1.1	1.609 (* Nondetect *)
Jul 27 1999	5.000 ppb	1.609 (* Nondetect *)
Nov 08 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 10 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 11 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 12 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 13 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 14 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 15 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 16 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 17 1999	5.000 ppb	1.609 (* Nondetect *)

Dec 18 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 19 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 20 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 21 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 22 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 23 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 24 1999	5.000 ppb	1.609 (* Nondetect *)

Observations (N): 31 Nondetects (%ND):100

 Minimum:
 5.000 ppb
 Ln Minimum:
 1.609

 Maximum:
 5.000 ppb
 Ln Maximum:
 1.609

 Mean:
 5.000 ppb
 Ln Mean:
 1.609

 Std. Dev.:
 0.000 ppb
 Ln Std. Dev.:
 0.000

Well ID:13MW2

Sample Date	Observation	Ln
Mar 31 1996	5.000 ppb	1.609 (* Nondetect *)
Jun 30 1996	5.000 ppb	1.609 (* Nondetect *)
Sep 30 1996	5.000 ppb	1.609 (* Nondetect *)
Dec 31 1996	5.000 ppb	1.609 (* Nondetect *)
Mar 31 1997	5.000 ppb	1.609 (* Nondetect *)
Jun 30 1997	5.000 ppb	1.609 (* Nondetect *)
Sep 30 1997	5.000 ppb	1.609 (* Nondetect *)
Dec 31 1997	5.000 ppb	1.609 (* Nondetect *)
Mar 09 1998	5.000 ppb	1.609 (* Nondetect *)
May 14 1998	5.000 ppb	1.609 (* Nondetect *)
Aug 14 1998	5.000 ppb	1.609 (* Nondetect *)
Nov 23 1998	5.000 ppb	1.609 (* Nondetect *)
Mar 13 1999	5.000 ppb	1.609 (* Nondetect *)
May 27 1999	5.000 ppb	1.609 (* Nondetect *)
Jul 27 1999	5.000 ppb	1.609 (* Nondetect *)
Nov 08 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 10 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 11 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 12 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 13 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 14 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 15 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 16 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 17 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 18 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 19 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 20 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 22 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 23 1999	5.000 ppb	1.609 (* Nondetect *)
Dec 24 1999	5.000 ppb	1.609 (* Nondetect *)

Well ID:13MW2 Summary Statistics

Observations (N): 30

Nondetects (%ND):100

 Minimum:
 5.000 ppb
 Ln Minimum:
 1.609

 Maximum:
 5.000 ppb
 Ln Maximum:
 1.609

 Mean:
 5.000 ppb
 Ln Mean:
 1.609

 Std. Dev.:
 0.000 ppb
 Ln Std. Dev.:
 0.000

Data Set Summary

Report Printed: 05-10-2005 17:19

Facility:RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford County:PULASKI ST:VA Zip:

Contact:

Phone:() -

Permit Type: Detection

Constituent: Sulfate Sulfate, total

CAS Number: 14808-79-8 MCL: 0.000 ppb

ACL: 0.000 ppb 1000.000 ppb Detect Limit:

Start Date:Mar 31 1996 End Date: Dec 30 1999

Sample Date	Observation	Ln
Mar 31 1996	88000.000 ppb	11.385 11.339
Jun 30 1996	84000.000 ppb	11.339
Sep 30 1996	80000.000 ppb	11.290
Dec 31 1996	82000.000 ppb	11.314
Mar 31 1997	70000.000 ppb	11.156
Jun 30 1997	64000.000 ppb	11.067
Sep 30 1997	73000.000 ppb	11.198
Dec 31 1997	79000.000 ppb	11.277
Mar 09 1998	73900.000 ppb	11.210
May 14 1998	61500.000 ppb	11.027
Aug 14 1998	64100.000 ppb	11.068
Nov 23 1998	73300.000 ppb	11.202
Mar 13 1999	65000.000 ppb	11.082
May 27 1999	53900.000 ppb	10.895
Jul 27 1999	68500.000 ppb	11.135
Nov 08 1999	61700.000 ppb	11.030
Dec 10 1999	65000.000 ppb	11.082
Dec 11 1999	47500.000 ppb	10.768
Dec 12 1999	39800.000 ppb	10.592
Dec 13 1999	59600.000 ppb	10.995
Dec 14 1999	59100.000 ppb	10.987
Dec 15 1999	34700.000 ppb	10.454
Dec 16 1999	58300.000 ppb	10.973
Dec 17 1999	64900.000 ppb	11.081
	* *	

Dec 18 1999	65000.000 ppb	11.082
Dec 19 1999	49200.000 ppb	10.804
Dec 20 1999	62900.000 ppb	11.049
Dec 21 1999	65000.000 ppb	11.082
Dec 22 1999	50100.000 ppb	10.822
Dec 23 1999	40900.000 ppb	10.619
Dec 24 1999	38900.000 ppb	10.569

Observations (N): 31 Nondetects (%ND): 0

 Minimum:
 34700.000 ppb
 Ln Minimum:
 10.454

 Maximum:
 88000.000 ppb
 Ln Maximum:
 11.385

 Mean:
 62670.957 ppb
 Ln Mean:
 11.020

 Std. Dev.:
 13583.912 ppb
 Ln Std. Dev.:
 0.235

Well ID:13MW2

Sample Date	Observation	Ln
Mar 31 1996	32000.000 ppb	10.373
Jun 30 1996	31000.000 ppb	10.342
Sep 30 1996	28000.000 ppb	10.240
Dec 31 1996	27000.000 ppb	10.204
Mar 31 1997	24000.000 ppb	10.086
Jun 30 1997	24000.000 ppb	10.086
Sep 30 1997	26000.000 ppb	10.166
Dec 31 1997	29000.000 ppb	10.275
Mar 09 1998	30300.000 ppb	10.319
May 14 1998	30700.000 ppb	10.332
Aug 14 1998	26900.000 ppb	10.200
Nov 23 1998	27500.000 ppb	10.222
Mar 13 1999	26200.000 ppb	10.174
May 27 1999	22400.000 ppb	10.017
Jul 27 1999	23100.000 ppb	10.048
Nov 08 1999	24400.000 ppb	10.102
Dec 10 1999	25700.000 ppb	10.154
Dec 11 1999	22200.000 ppb	10.008
Dec 12 1999	27300.000 ppb	10.215
Dec 13 1999	23400.000 ppb	10.060
Dec 14 1999	26300.000 ppb	10.177
Dec 15 1999	31800.000 ppb	10.367
Dec 16 1999	22700.000 ppb	10.030
Dec 17 1999	24100.000 ppb	10.090
Dec 18 1999	29900.000 ppb	10.306
Dec 19 1999	28300.000 ppb	10.251
Dec 20 1999	28500.000 ppb	10.258
Dec 22 1999	34100.000 ppb	10.437
Dec 23 1999	48800.000 ppb	10.795
Dec 24 1999	32800.000 ppb	10.398

Well ID:13MW2 Summary Statistics

Observations (N): 30

Nondetects (%ND): 0

Minimum: 22200.000 ppb Maximum: 48800.000 ppb Mean: 27946.664 ppb Std. Dev.: 5141.363 ppb Ln Minimum: 10.008 Ln Maximum: 10.795 Ln Mean: 10.224

10.224 0.162 Ln Std. Dev.:

Normality Tests

Report Printed: 05-10-2005 17:19

Facility: RAAPHWMU13 Haz. Waste Unit 13 - RAAP

Address:

City:Radford

ST:VA Zip:

County: PULASKI

Contact:

Phone:() -

Permit Type: Detection

Constituent: Sulfate Sulfate, total

CAS Number: 14808-79-8

MCL: ACL:

0.000 ppb 0.000 ppb

Detect Limit:

1000.000 ppb

Start Date: Mar 31 1996 End Date: Dec 30 1999

Normality Test on Observations for wells listed below:

Position: Upgradient Observations: 31 Well:13MW1

Scale Original:

Minimum 34700.000

Maximum 88000.000

Mean 62670.957

Std Dev 13583.912

Log:

10.454

11.385

11.020

0.235

Well:13MW2

Position: Upgradient Observations: 30

Scale Original:

Minimum 22200.000

Maximum 48800.000

Mean 27946.664

Std Dev 5141.363

Log:

10.008

10.795

10.224

0.162

Pooled Statistics

Statistic

Observations:

61

Original

Log

Scale Scale

45593.438 20283.574 10.629 0.449

Std Dev: Skewness:

Mean:

0.447 0.144

Kurtosis:

-1.253

-1.55110.008

Minimum: Maximum: 22200.000 88000.000

11.385

CV: 0.445 0.042

Shapiro-Francia Statistics

Test 5% Critical 1% Critical Scale Statistic Value Value Original: 0.8955* Log: 0.9128* 0.9630 0.9470 0.9630 0.9470

^{*} Indicates statistically significant evidence of non-normality. GRIT/STAT Version 5.0

Nonparametric Prediction Interval Report Printed May 10,2005

Page 1

Facility:Haz. Waste Unit 13 - RAAP Parameter:Sulfate, total(CAS Number:14808-79-8)

ONE-TAILED UPPER PARAMETRIC PREDICTION INTERVAL

Observations (n): Conf. Level $(1-\alpha)$:

61

100.000%

UL: 22200.000 ppb LL: 0.000

1/ND: 0